
http://www.findbeststuff.com

Memory Management

Algorithms and
Implementation in C/C++

by
Bill Blunden

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Blunden, Bill, 1969-
Memory management: algorithms and implementation in C/C++ / by
Bill Blunden.

p. cm.
Includes bibliographical references and index.
ISBN 1-55622-347-1
1. Memory management (Computer science) 2. Computer algorithms.
3. C (Computer program language) 4. C++ (Computer program
language) I. Title.
QA76.9.M45 .B558 2002
005.4'35--dc21 2002012447

CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-347-1
10 9 8 7 6 5 4 3 2 1
0208

Product names mentioned are used for identification purposes only and may be trademarks of

their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

This book is dedicated to Rob, Julie, and Theo.

And also to David M. Lee

“I came to learn physics, and I got Jimmy Stewart”

iii

Table of Contents

Acknowledgments . xi
Introduction . xiii

Chapter 1 Memory Management Mechanisms. 1

Mechanism Versus Policy 1
Memory Hierarchy . 3
Address Lines and Buses. 9
Intel Pentium Architecture 11

Real Mode Operation. 14
Protected Mode Operation. 18

Protected Mode Segmentation 19
Protected Mode Paging 26
Paging as Protection 31
Addresses: Logical, Linear, and Physical 33
Page Frames and Pages 34

Case Study: Switching to Protected Mode 35
Closing Thoughts . 42
References . 43

Chapter 2 Memory Management Policies. 45

Case Study: MS-DOS . 46
DOS Segmentation and Paging 46
DOS Memory Map . 47
Memory Usage . 49
Example: A Simple Video Driver 50
Example: Usurping DOS 52
Jumping the 640KB Hurdle 56

Case Study: MMURTL 59
Background and Design Goals 60
MMURTL and Segmentation 61
Paging Variations . 63
MMURTL and Paging 64

v

Memory Allocation . 66
Case Study: Linux . 67

History and MINIX . 67
Design Goals and Features. 68
Linux and Segmentation 69
Linux and Paging . 72

Three-Level Paging 72
Page Fault Handling 76

Memory Allocation . 76
Memory Usage . 81
Example: Siege Warfare 82
Example: Siege Warfare, More Treachery 87

Case Study: Windows . 92
Historical Forces . 92
Memory Map Overview 96
Windows and Segmentation 99

Special Weapons and Tactics 99
Crashing Windows with a Keystroke 102
Reverse Engineering the GDT 102

Windows and Paging 105
Linear Address Space Taxonomy 105
Musical Chairs for Pages. 106
Memory Protection 108
Demand Paging . 109

Memory Allocation 110
Memory Usage . 114
Turning Off Paging 117
Example: Things That Go Thunk in the Night 118

Closing Thoughts . 122
References . 123

Books and Articles 123
Web Sites . 125

Chapter 3 High-Level Services. 127

View from 10,000 Feet 127
Compiler-Based Allocation 129

Data Section . 132
Code Section . 134
Stack . 136

Activation Records 138
Scope . 144

Table of Contents

vi

Static or Dynamic? 150
Heap Allocation . 151

System Call Interface 151
The Heap . 156

Manual Memory Management. 157
Example: C Standard Library Calls 158
Automatic Memory Management 160
Example: The BDW Conservative Garbage Collector

. 161
Manual Versus Automatic?. 164

The Evolution of Languages. 168
Case Study: COBOL 171
Case Study: FORTRAN. 177
Case Study: Pascal 181
Case Study: C . 184
Case Study: Java. 192

Language Features 192
Virtual Machine Architecture 194
Java Memory Management 196

Memory Management: The Three-layer Cake 202
References . 204

Chapter 4 Manual Memory Management 207

Replacements for malloc() and free() 207
System Call Interface and Porting Issues 208
Keep It Simple . . .Stupid! 211
Measuring Performance 212

The Ultimate Measure: Time 212
ANSI and Native Time Routines 213
The Data Distribution: Creating Random Variates . 215

Testing Methodology 219
Indexing: The General Approach 224
malloc() Version 1: Bitmapped Allocation. 224

Theory . 224
Implementation . 226

tree.cpp . 227
bitmap.cpp . 232
memmgr.cpp . 236
mallocV1.cpp . 239
perform.cpp . 241
driver.cpp . 241

Table of Contents

vii

Tests . 242
Trade-Offs . 247

malloc() Version 2: Sequential Fit 248
Theory . 249
Implementation . 251

memmgr.cpp . 251
mallocV2.cpp . 260
driver.cpp . 261

Tests . 262
Trade-Offs . 264

malloc() Version 3: Segregated Lists 265
Theory . 265
Implementation . 266

memmgr.cpp . 267
mallocV3.cpp . 274

Tests . 275
Trade-Offs . 279

Performance Comparison 279

Chapter 5 Automatic Memory Management 281

Garbage Collection Taxonomy 281
malloc() Version 4: Reference Counting 283

Theory . 283
Implementation . 284

driver.cpp . 285
mallocV4.cpp . 287
perform.cpp . 288
memmgr.cpp . 289

Tests . 299
Trade-Offs . 302

malloc() Version 5: Mark-Sweep 304
Theory . 304
Implementation . 307

driver.cpp . 307
mallocV5.cpp . 309
perform.cpp . 311
memmgr.cpp . 312

Tests . 325
Trade-Offs . 330

Performance Comparison 332
Potential Additions . 332

Table of Contents

viii

Object Format Assumptions 333
Variable Heap Size 335
Indirect Addressing 335
Real-Time Behavior 337
Life Span Characteristics 338
Multithreaded Support 339

Chapter 6 Miscellaneous Topics 343

Suballocators . 343
Monolithic Versus Microkernel Architectures 348
Closing Thoughts . 351

Index . 355

Table of Contents

ix

Acknowledgments

Publishing a book is an extended process that involves a number of
people. Writing the final manuscript is just a small part of the big
picture. This section is dedicated to all the people who directly, and
indirectly, lent me their help.

First and foremost, I would like to thank Jim Hill of Wordware
Publishing for giving me the opportunity to write a book and believ-
ing in me. I would also like to extend thanks to Wes Beckwith and
Beth Kohler. Wes, in addition to offering constant encouragement,
does a great job of putting up with my e-mails and handling the vari-
ous packages that I send. Beth Kohler, who performed the
incredible task of reading my first book for Wordware in a matter of
days, has also been invaluable.

I first spoke with Barry Brey back in the mid-1990s when I
became interested in protected mode programming. He has always
taken the time to answer my questions and offer his insight. Barry
wrote the first book on the Intel chip set back in 1984. Since then,
he has written well over 20 books. His current textbook on Intel’s
IA32 processors is in its sixth edition. This is why I knew I had to
ask Barry to be the technical editor for this book. Thanks, Barry.

“Look, our middleware even runs on that little Windows
NT piece of crap.”

— George Matkovitz

“Hey, who was the %&^$ son of a &*$# who wrote this
optimized load of . . . oh, it was me.”

— Mike Adler

Mike Adler and George Matkovitz are two old fogeys who worked at
Control Data back when Seymour Cray kicked the tar out of IBM.
George helped to implement the world’s first message-passing
operating system at Control Data. Mike also worked on a number of
groundbreaking system software projects. I met these two codgers
while performing R&D for an ERP vendor in the Midwest. I hadn’t
noticed how much these engineers had influenced me until I left

xi

Minnesota for California. It was almost as though I had learned
through osmosis. A lot of my core understanding of software and
the computer industry in general is based on the bits of hard-won
advice and lore that these gentlemen passed on to me. I distinctly
remember walking into Mike’s office and asking him, “Hey Mike,
how do you build an operating system?”

I would also like to thank Frank Merat, a senior professor at Case
Western Reserve University. Frank has consistently shown interest
in my work and has offered his support whenever he could. There is
no better proving ground for a book than an established research
university.

Finally, I would like to thank SonicWALL, Inc. for laying me off
and giving me the opportunity to sit around and think. The days I
spent huddled with my computers were very productive.

Acknowledgments

xii

Introduction

“Pay no attention to the man behind the curtain.”
— The Wizard of Oz

There are a multitude of academic computer science texts that dis-
cuss memory management. They typically devote a chapter or less
to the subject and then move on. Rarely are concrete, machine-level
details provided, and actual source code is even scarcer. When the
author is done with his whirlwind tour, the reader tends to have a
very limited idea about what is happening behind the curtain. This
is no surprise, given that the nature of the discussion is rampantly
ambiguous. Imagine trying to appreciate Beethoven by having
someone read the sheet music to you or experience the Mona Lisa
by reading a description in a guidebook.

This book is different. Very different.
In this book, I am going to pull the curtain back and let you see

the little man operating the switches and pulleys. You may be
excited by what you see, or you may feel sorry that you decided to
look. But as Enrico Fermi would agree, knowledge is always better
than ignorance.

This book provides an in-depth look at memory subsystems and
offers extensive source code examples. In cases where I do not
have access to source code (i.e., Windows), I offer advice on how to
gather forensic evidence, which will nurture insight. While some
books only give readers a peak under the hood, this book will give
readers a power drill and allow them to rip out the transmission.
The idea behind this is to allow readers to step into the garage and
get their hands dirty.

My own experience with memory managers began back in the
late 1980s when Borland’s nifty Turbo C 1.0 compiler was released.
This was my first taste of the C language. I can remember using a
disassembler to reverse engineer library code in an attempt to see
how the malloc() and free() standard library functions

xiii

operated. I don’t know how many school nights I spent staring at an
80x25 monochrome screen, deciphering hex dumps. It was tough
going and not horribly rewarding (but I was curious, and I couldn’t
help myself). Fortunately, I have done most of the dirty work for
you. You will conveniently be able to sidestep all of the hurdles and
tedious manual labor that confronted me.

If you were like me and enjoyed taking your toys apart when you
were a child to see how they worked, then this is the book for you.
So lay your computer on a tarpaulin, break out your compilers, and
grab an oil rag. We’re going to take apart memory management sub-
systems and put them back together. Let the dust fly where it may!

Historical Setting

In the late 1930s, a group of scholars arrived at Bletchley Park in an
attempt to break the Nazis’ famous Enigma cipher. This group of
codebreakers included a number of notable thinkers, like Tommy
Flowers and Alan Turing. As a result of the effort to crack Enigma,
the first electronic computer was constructed in 1943. It was named
Colossus and used thermionic valves (known today as vacuum tubes)
for storing data. Other vacuum tube computers followed. For exam-
ple, ENIAC (electronic numerical integrator and computer) was
built by the U.S. Army in 1945 to compute ballistic firing tables.

NOTE Science fiction aficionados might enjoy a movie called Colos-

sus: The Forbin Project. It was made in 1969 and centers around
Colossus, a supercomputer designed by a scientist named Charles
Forbin. Forbin convinces the military that they should give control of
the U.S. nuclear arsenal to Colossus in order to eliminate the potential
of human error accidentally starting World War III. The movie is similar
in spirit to Stanley Kubrick’s 2001: A Space Odyssey, but without the
happy ending: Robot is built, robot becomes sentient, robot runs
amok. I was told that everyone who has ever worked at Control Data
has seen this movie.

The next earth-shaking development arrived in 1949 when ferrite
(iron) core memory was invented. Each bit of memory was made of
a small, circular iron magnet. The value of the bit switched from “1”
to “0” by using electrical wires to magnetize the circular loops in
one of two possible directions. The first computer to utilize ferrite
core memory was IBM’s 705, which was put into production in
1955. Back in those days, 8KB of memory was considered a huge
piece of real estate.

Introduction

xiv

Everything changed once transistors became the standard way to
store bits. The transistor was presented to the world in 1948 when
Bell Labs decided to go public with its new device. In 1954, Bell
Labs constructed the first transistor-based computer. It was named
TRADIC (TRAnsistorized DIgital Computer). TRADIC was much
smaller and more efficient than vacuum tube computers. For exam-
ple, ENIAC required 1,000 square feet and caused power outages in
Philadelphia when it was turned on. TRADIC, on the other hand,
was roughly three cubic feet in size and ran on 100 watts of
electricity.

NOTE Before electronic computers became a feasible alternative,
heavy mathematical computation relied on human computers. Large
groups of people would be assembled to carry out massive numerical
algorithms. Each person would do a part of a computation and pass it
on to someone else. This accounts for the prevalance of logarithm
tables in mathematical references like the one published by the Chem-
ical Rubber Company (CRC). Slide rules and math tables were
standard fare before the rise of the digital calculator.

ASIDE

“After 45 minutes or so, we’ll see that the results are
obvious.”

— David M. Lee

I have heard Nobel laureates in physics, like Dave Lee,
complain that students who rely too heavily on calculators
lose their mathematical intuition. To an extent, Dave is cor-
rect. Before the dawn of calculators, errors were more com-
mon, and developing a feel for numeric techniques was a
useful way to help catch errors when they occurred.

During the Los Alamos project, a scientist named Dick
Feynman ran a massive human computer. He once mentioned
that the performance and accuracy of his group’s computa-
tions were often more a function of his ability to motivate
people. He would sometimes assemble people into teams
and have them compete against each other. Not only was
this a good idea from the standpoint of making things more
interesting, but it was also an effective technique for catching
discrepancies.

Introduction

xv

In 1958, the first integrated circuit was invented. The inventor was
a fellow named Jack Kilby, who was hanging out in the basement of
Texas Instruments one summer while everyone else was on vaca-
tion. A little over a decade later, in 1969, Intel came out with a 1
kilobit memory chip. After that, things really took off. By 1999, I
was working on a Windows NT 4.0 workstation (service pack 3) that
had 2GB of SDRAM memory.

The general trend you should be able to glean from the previous
discussion is that memory components have solved performance
requirements by getting smaller, faster, and cheaper. The hardware
people have been able to have their cake and eat it too. However,
the laws of physics place a limit on how small and how fast we can
actually make electronic components. Eventually, nature itself will
stand in the way of advancement. Heisenberg’s Uncertainty Princi-
ple, shown below, is what prevents us from building infinitely small
components.

x p (h/4)

For those who are math-phobic, I will use Heinsenberg’s own words
to describe what this equation means:

“The more precisely the position is determined, the less pre-
cisely the momentum is known in this instant, and vice versa.”

In other words, if you know exactly where a particle is, then you
will not be able to contain it because its momentum will be huge.
Think of this like trying to catch a tomato seed. Every time you try
to squeeze down and catch it, the seed shoots out of your hands and
flies across the dinner table into Uncle Don’s face.

Einstein’s General Theory of Relativity is what keeps us from
building infinitely fast components. With the exception of black
holes, the speed limit in this universe is 3x108 meters per second.
Eventually, these two physical limits are going to creep up on us.

When this happens, the hardware industry will have to either
make larger chips (in an effort to fit more transistors in a given area)
or use more efficient algorithms so that they can make better use of
existing space. My guess is that relying on better algorithms will be
the cheaper option. This is particularly true with regard to memory
management. Memory manipulation is so frequent and crucial to
performance that designing better memory management subsys-
tems will take center stage in the future. This will make the time
spent reading this book a good investment.

Introduction

xvi

Impartial Analysis

In this book, I try very hard to offer memory management solutions
without taking sides. I have gone to great lengths to present an
unbiased discussion. This is important because it is extremely
tempting to champion a certain memory management algorithm
(especially if you invented it). There are some journal authors who
would have you believe that their new algorithm is a panacea to
cure the ills of the world. I do not have the ulterior motives of a col-
lege professor. I am here to offer you a set of tools and then let you
decide how best to use them. In this book, I will present you with
different techniques and try to point out the circumstances in which
they perform well.

The question “Which is the best memory management algo-
rithm?” is very similar in spirit to any of the following questions:

“Which operating system is the best?”
“Which programming language is the best?”
“Which data structure is the best?”
“Which type of screwdriver is the best?”

I can recall asking a program manager at Eaton Corp., John
Schindler, what the best operating system was. John was managing
at least a dozen different high-end platforms for Eaton, and I
thought he would know. I was expecting him to come right back
with a quick answer like: “Oh, OpenBSD is the best.” What actually
happened was something that surprised me. He looked at me for a
minute, as if the question was absurd. Then he smiled and said,
“Well, it really depends on what you’re going to use the machine for.
I use Solaris for networking, HP-UX for app servers, AIX to talk to
our mainframe, NT for mail, . . . ”

The truth is there is no “best” solution. Most solutions merely
offer certain trade-offs. In the end, the best tool to use will depend
upon the peculiarities of the problem you are trying to solve.

This is a central theme that appears throughout the domain of
computer science. Keep it in the back of your mind, like some sort
of Buddhist mantra:

“There is no best solution, Grasshopper, only trade-offs.”

For example, linked lists and arrays can both represent a linear set
of items. With a linked list, you get easy manipulation at the
expense of speed. Adding an element to a linked list is as easy as
modifying a couple of pointers. However, to find a given list

Introduction

xvii

element, you may have to traverse the entire list manually until you
find it. Conversely, with an array, you get access speed at the
expense of flexibility. Accessing an array element is as easy as add-
ing an integer to a base address, but adding and deleting array
elements requires a lot of costly shifting. If your code is not going to
do a lot of list modification, an array is the best choice. If your code
will routinely add and delete list members, a linked list is the better
choice. It all depends upon the context of the problem.

Audience

This book is directed toward professional developers and students
who are interested in discovering how memory is managed on pro-
duction systems. Specifically, engineers working on PC or
embedded operating systems may want to refresh their memory or
take a look at alternative approaches. If this is the case, then this
book will serve as a repository of algorithms and software compo-
nents that you can apply to your day-to-day issues.

Professionals who design and construct development tools will
also find this book useful. In general, development tools fall into the
class of online transaction processing (OLTP) programs. When it
comes to OLTP apps, pure speed is the name of the game. As such,
programming language tools, like compilers, often make use of
suballocators to speed up the performance of the code that manipu-
lates their symbol table.

With regard to compiling large software programs consisting of
millions of lines of code, this type of suballocator-based optimization
can mean the difference between waiting for a few minutes and
waiting for a few hours. Anyone who mucks around with
suballocators will find this book indispensable.

Software engineers who work with virtual machines will also be
interested in the topics that I cover. The Java virtual machine is
famous for its garbage collection facilities. In this book I explore
several automatic memory management techniques and also pro-
vide a couple of concrete garbage collection implementations in
C++.

Finally, this book also targets the curious. There is absolutely
nothing wrong with being curious. In fact, I would encourage it. You
may be an application developer who has used memory manage-
ment facilities countless times in the past without taking the time to

Introduction

xviii

determine how they really work. You may also have nurtured an
interest that you have had to repress due to deadlines and other pri-
orities. This book will offer such engineers an opportunity to
indulge their desire to see what is going on under the hood.

Organization

This book is divided into six chapters. I will start from the ground
up and try to provide a comprehensive, but detailed, view of mem-
ory management fundamentals. Because of this, each chapter builds
on what has been presented in the previous one. Unless you are a
memory management expert, the best way to read this book is
straight through.

Chapter 1 – Memory Management Mechanisms

The first chapter presents a detailed look at the machinery that
allows memory management to take place. Almost every operating
system in production takes advantage of facilities that are provided
by the native processor. This is done primarily for speed, since
pushing repetitive bookkeeping down to the hardware benefits over-
all performance. There have been attempts by some engineers to
track and protect memory strictly outside of the hardware. But
speed is key to the hardware realm, and this fact always forces such
attempts off of the playing field. The end result is that understand-
ing how memory management is performed means taking a good
look at how memory hardware functions.

Chapter 2 – Memory Management Policies

Computer hardware provides the mechanism for managing memory,
but the policy decisions that control how this mechanism is applied
are dictated by the operating system and its system call interface to
user programs. In this chapter, the memory management compo-
nents provided by the operating system are analyzed and dissected.
This will necessarily involve taking a good, hard look at the inter-
nals of production operating systems like Linux and Windows.

In general, hardware always provides features that are ahead of
the software that uses it. For example, Intel’s Pentium provides four
distinct layers of memory protection. Yet, I could not find a single

Introduction

xix

operating system that took advantage of all four layers. All the sys-
tems that I examined use a vastly simplified two-layer scheme.

NOTE The relationship between hardware and software is analo-
gous to the relationship between mathematics and engineering.
Mathematics tends to be about 50 years ahead of engineering, which
means that it usually takes about 50 years for people to find ways to
apply the theorems and relationships that the mathematicians uncover.

Chapter 3 – High-Level Services

Above the hardware and the cocoon of code that is the operating
system are the user applications. Because they are insulated from
the inner workings of the operating system, applications have an
entirely different way to request, use, and free memory. The man-
ner in which a program utilizes memory is often dependent on the
language in which the program was written. This chapter looks at
memory management from the perspective of different program-
ming languages. This chapter also serves as a launch pad for the
next two chapters by presenting an overview of memory manage-
ment at the application level.

Chapter 4 – Manual Memory Management

In Chapter 4, a number of manual memory management algorithms
are presented in explicit detail. The algorithms are presented in the-
ory, implemented in C++, and then critiqued in terms of their
strengths and weaknesses. The chapter ends with suggestions for
improvements and a look at certain hybrid approaches.

Chapter 5 – Automatic Memory Management

In Chapter 5, a number of automatic memory management algo-
rithms are examined. The algorithms are presented in theory,
implemented in C++, and then critiqued in terms of their strengths
and weaknesses. A significant amount of effort is invested in mak-
ing this discussion easy to follow and keeping the reader focused on
key points. Two basic garbage collectors are provided and compared
to other, more advanced collection schemes.

Introduction

xx

Chapter 6 – Miscellaneous Topics

This chapter covers a few special-purpose subjects that were diffi-
cult to fit into the previous five chapters. For example, I describe
how to effectively implement a suballocator in a compiler. I also take
a look at how memory management subsystems can be made to
provide dynamic algorithm support at run time via a microkernel
architecture.

Approach

When it comes to learning something complicated, like memory
management, I believe that the most effective way is to examine a
working subsystem. On the other hand, it is easy to become lost in
the details of a production memory manager. Contemporary mem-
ory managers, like the one in Linux, are responsible for keeping
track of literally hundreds of run-time quantities. Merely tracking
the subsystem’s execution path can make one dizzy. Hence, a bal-
ance has to be struck between offering example source code that is
high quality and also easy to understand. I think I have done a suffi-
cient job of keeping the learning threshold low without sacrificing
utility.

NOTE I am more than aware of several books where the author is
more interested in showing you how clever he is instead of actually try-
ing to teach a concept. When at all possible, I try to keep my examples
relatively simple and avoid confusing syntax. My goal is to instruct, not
to impress you so much that you stop reading.

In this book, I will follow a fairly standard three-step approach:

1. Theory

2. Practice

3. Analysis

I will start each topic by presenting a related background theory.
Afterwards, I will offer one or more source code illustrations and
then end each discussion with an analysis of trade-offs and alterna-
tives. I follow this methodology throughout the entire book.

Introduction

xxi

Typographical Conventions

Words and phrases will appear in italics in this book for two reasons:

� To place emphasis

� When defining a term

The courier font will be used to indicate that text is one of the
following:

� Source code

� An address in memory

� Console input/output

� A filename or extension

Numeric values appear throughout this book in a couple of different
formats. Hexadecimal values are indicated by either prefixing them
with “0x” or appending “H” to the end.

For example:

0xFF02

0FF02H

The C code that I include will use the former notation, and the
assembler code that I include will use the latter format.

Binary values are indicated by appending the letter “B” to the
end. For example:

0110111B

Prerequisites

“C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do, it blows away your whole leg.”

— Bjarne Stroustrup

In this book, I have primarily used three different development
languages:

� 80x86 assembler

� C

� C++

For some examples, I had no other choice but to rely on assembly
language. There are some things, like handling processor

Introduction

xxii

interrupts, that can only be fleshed out using assembler. This is one
reason why mid-level languages, like C, provide syntactic facilities
for inline assembly code. If you look at the Linux source code, you
will see a variety of inline assembly code snippets. If at all possible,
I wrapped my assembly code in C. However, you can’t always do
this.

Learning assembly language may seem like an odious task, but
there are several tangible and significant rewards. Assembly lan-
guage is just a mnemonic representation of machine instructions.
When you have a complete understanding of a processor’s assembly
language, including its special “privileged” instructions, you will
also have a fairly solid understanding of how the machine functions
and what its limitations are. In addition, given that compilers gener-
ate assembly code, or at least spit it out in a listing file, you will also
be privy to the inner workings of development tools.

In short, knowing assembly language is like learning Latin. It
may not seem immediately useful, but it is . . . just give it time.

I use C early in the book for small applications when I felt like I
could get away with it. Most of the larger source code examples in
this book, however, are written in C++. If you don’t know C or
C++, you should pick up one of the books mentioned in the “Refer-
ences” section at the end of the Introduction. After a few weeks of
cramming, you should be able to follow my source code examples.

I think C++ is an effective language for implementing memory
management algorithms because it offers a mixture of tools. With
C++, you can manipulate memory at a very low, bit-wise level and
invoke inline assembly code when needed. You can also create
high-level constructs using the object-oriented language features in
C++. Encapsulation, in particular, is a compiler-enforced language
feature that is crucial for maintaining large software projects.

NOTE At times, you may notice that I mix C libraries and conven-
tions into my C++ source code. I do this, most often, for reasons
related to performance. For example, I think that C’s printf() is
much more efficient than cout.

C++ is often viewed by engineers, including myself, as C with a
few object-oriented bells and whistles added on. Bjarne Stroustrup,
the inventor of C++, likes to think of it as a “better form of C.”
According to Stroustrup, the original C++ compiler (named Cfront,
as in “C front end”) started off as an elaborate preprocessor that
produced C code as output. This C code was then passed on to a

Introduction

xxiii

full-fledged C compiler. As time progressed, C++ went from being
a front end to a C compiler to having its own dedicated compiler.
Today, most software vendors sell C++ compilers with the implicit
understanding that you can also use them to write C code.

In general, C is about as close to assembly language as you can
get without losing the basic flow-control and stack-frame niceties
that accompany high-level languages. C was because Ken Thomp-
son got tired of writing assembly code. The first version of UNIX,
which ran on a DEC PDP-7 in the late 1960s, was written entirely in
assembler (and you thought that Mike Podanoffsky had it tough).
Ken solved his assembly language problems by creating a variation
of BCPL, which he called B. The name of the programming lan-
guage was then changed to “C” by Dennis Ritchie, after some
overhauling. Two Bell Labs researchers, Brian Kernighan and Den-
nis Ritchie, ended up playing vital roles in the evolution of the
language. In fact, the older form of C’s syntax is known as
Kernighan and Ritchie C (or just K&R C).

C and C++ are both used to implement operating systems.
Linux, for example, is written entirely in C. Although C is still the
dominant system language for historical reasons, C++ is slowly
beginning to creep into the source code bases of at least a couple
commercial operating systems. Microsoft’s Windows operating sys-
tem has chunks of its kernel written in C++. One might speculate
that this trend can be directly linked to the rapidly increasing com-
plexity of operating systems.

Companion Files

Software engineering is like baseball. The only way you will ever
acquire any degree of skill is to practice and scrimmage whenever
you get the chance. To this end, I have included the source code for
most of the examples in this book in a downloadable file available at
www.wordware.com/memory.

Dick Feynman, who was awarded the Nobel Prize in physics in
1965, believed that the key to discovery and insight was playful
experimentation. Dick was the kind of guy who followed his own
advice. In his biography, Surely You’re Joking, Mr. Feynman, Dick
recounts how spinning plates in a dining hall at Cornell led to his-
toric work in quantum mechanics. By testing a variety of new ideas
and comparing the results to your predictions, you force yourself to

Introduction

xxiv

gain a better understanding of how things work. This approach also
gives you the hands-on experience necessary to nurture a sense of
intuition.

It is in this spirit that I provide this book’s source code in the
downloadable files. By all means, modify it, hack it, and play with it.
Try new things and see where they lead you. Make predictions and
see if empirical results support your predictions. If the results don’t,
then try to determine why and construct alternative explanations.
Test those explanations. Add new functionality and see how it
affects things. Take away components and see what happens. Bet a
large sum of money with a friend to see who can implement the best
improvement. But above all, have fun.

References

Brey, Barry. The Intel Microprocessors: 8086/8088, 80186, 80286,

80386, 80486, Pentium, Pentium Pro, and Pentium II. 2000,
Prentice Hall, ISBN: 0-13-995408-2.

This is a fairly recent book and should take care of any ques-
tions you may have. Barry has been writing about Intel chips
since the first one came out.

Kernighan, Brian and Dennis Ritchie. The C Programming Lan-

guage. 1988, Prentice Hall, ISBN: 0131103628.
This is a terse, but well-read introduction to C by the founding

fathers of the language.

Reid, T. R. The Chip: How Two Americans Invented the Microchip

and Launched a Revolution. 2001, Random House, ISBN:
0375758283.

Schildt, Herbert. C++ From the Ground Up. 1998, Osborne
McGraw-Hill, ISBN: 0078824052.

If you have never programmed in C/C++, read this book. It is
a gentle introduction written by an author who knows how to
explain complicated material. Herb starts by teaching you C and
then slowly introducing the object-oriented features of C++.

Stroustrup, Bjarne and Margaret Ellis. The Annotated C++ Refer-

ence. 1990, Addison-Wesley, ISBN: 0201514591.
Once you have read Schildt’s book, you can use this text to fill

in the gaps. This book is exactly what it says it is — a reference
— and it is a good one.

Introduction

xxv

Stroustrup, Bjarne. The Design and Evolution of C++. 1994,
Addison-Wesley Pub. Co., ISBN: 0201543303.

This is an historical recount of C++’s creation by the man
who invented the language. The discussion is naturally very
technical and compiler writers will probably be able to appreciate
this book the most. This is not for the beginner.

Warning

In this book I provide some rather intricate, and potentially danger-
ous, source code examples. This is what happens when you go
where you are not particularly supposed to be. I recommend that
you use an expendable test machine to serve as a laboratory. Also,
you might want to consider closing all unnecessary applications
before experimenting. If an application dies in the middle of an
access to disk, you could be faced with a corrupt file system.

If you keep valuable data on the machine you are going to use, I
suggest you implement a disaster recovery plan. During the writing
of this book’s manuscript, I made a point to perform daily incremen-
tal backups and complete weekly backups of my hard drive. I also
had a secondary machine that mirrored by primary box. Large cor-
porations, like banks and insurance companies, have truly extensive
emergency plans. I toured a production site in Cleveland that had
two diesel fuel generators and a thousand gallons of gas to provide
backup power.

Neither the publisher nor author accept any responsibility for any
damage that may occur as a result of the information contained
within this book. As Stan Lee might say, “With great power comes
great responsibility.”

Introduction

xxvi

Author Information

Bill Blunden has been obsessed with systems software since his
first exposure to the DOS debug utility in 1983. His single-minded
pursuit to discover what actually goes on under the hood led him to
program the 8259 interrupt controller and become an honorable
member of the triple-fault club. After obtaining a BA in mathemati-
cal physics and an MS in operations research, Bill was unleashed
upon the workplace. It was at an insurance company in the beautiful
city of Cleveland, plying his skills as an actuary, that Bill got into his
first fist fight with a cranky IBM mainframe. Bloody but not beaten,
Bill decided that groking software beat crunching numbers. This led
him to a major ERP player in the midwest, where he developed
CASE tools in Java, wrestled with COBOL middleware, and was
assailed by various Control Data veterans. Having a quad-processor
machine with 2GB of RAM at his disposal, Bill was hard pressed to
find any sort of reason to abandon his ivory tower. Nevertheless, the
birth of his nephew forced him to make a pilgrimage out west to Sil-
icon Valley. Currently on the peninsula, Bill survives rolling power
blackouts and earthquakes, and is slowly recovering from his initial
bout with COBOL.

xxvii

Chapter 1

Memory Management
Mechanisms

“Everyone has a photographic memory. Some people just don’t
have film.”

— Mel Brooks

NOTE In the text of this book, italics are used to define or
emphasize a term. The Courier font is used to denote code, memory
addresses, input/output, and filenames. For more information, see the
section titled “Typographical Conventions” in the Introduction.

Mechanism Versus Policy

Accessing and manipulating memory involves a lot of accounting
work. Measures have to be taken to ensure that memory being
accessed is valid and that it corresponds to actual physical storage.
If memory protection mechanisms are in place, checks will also need
to be performed by the processor to ensure that an executing task
does not access memory locations that it should not. Memory pro-
tection is the type of service that multiuser operating systems are
built upon. If virtual memory is being used, a significant amount of
bookkeeping will need to be maintained in order to track which disk
sectors belong to which task. It is more effort than you think, and all
the steps must be completed flawlessly.

NOTE On the Intel platform, if the memory subsystem’s data struc-
tures are set up incorrectly, the processor will perform what is known
as a triple fault. A double fault occurs on Intel hardware when an
exception occurs while the processor is already trying to handle an
exception. A triple fault occurs when the double-fault handler fails and
the machine is placed into the SHUTDOWN cycle. Typically, an Intel
machine will reset when it encounters this type of problem.

1

For the sake of execution speed, processor manufacturers give their
chips the capacity to carry out advanced memory management
chores. This allows operating system vendors to effectively push
most of the tedious, repetitive work down to the processor where
the various error checks can be performed relatively quickly. This
also has the side effect of anchoring the operating system vendor to
the hardware platform, to an extent.

The performance gains, however, are well worth the lost porta-
bility. If an operating system were completely responsible for
implementing features like paging and segmentation, it would be
noticeably slower than one that took advantage of the processor’s
built-in functionality. Imagine trying to play a graphics-intensive,
real-time game like Quake 3 on an operating system that manually
protected memory; the game would just not be playable.

NOTE You might be asking if I can offer a quantitative measure of
how much slower an operating system would be. I will admit I have
been doing a little arm waving. According to a 1993 paper by Wahbe,
Lucco, et al. (see the “References” section), they were able to isolate
modules of code in an application using a technique they labeled as
sandboxing. This technique incurred a 4% increase in execution speed.
You can imagine what would happen if virtual memory and access
privilege schemes were added to such a mechanism.

ASIDE

An arm-waving explanation is a proposition that has not been
established using precise mathematical statements. Mathe-
matical statements have the benefit of being completely un-
ambiguous: They are either true or false. An arm-waving
explanation tends to eschew logical rigor entirely in favor of
arguments that appeal to intuition. Such reasoning is at best
dubious, not only because intuition can often be incorrect, but
also because intuitive arguments are ambiguous. For example,
people who argue that the world is flat tend to rely on arm-
waving explanations.

NOTE Back when Dave Cutler’s brainchild, Windows NT, came out,
there was a lot of attention given to the operating system’s Hardware
Abstraction Layer (HAL). The idea was that the majority of the operat-
ing system could be insulated from the hardware that it ran on by a
layer of code located in the basement. This was instituted to help
counter the hardware dependency issue that I mentioned a minute
ago. To Dave’s credit, NT actually did run on a couple of traditionally
UNIX-oriented hardware platforms. This included Digital’s Alpha pro-
cessor and the MIPS RISC processor. The problem was that Microsoft
couldn’t get a number of its higher-level technologies, like DCOM, to

2 Chapter 1

run on anything but Intel. So much for an object technology based on
a binary standard!

The solution that favors speed always wins. I was told by a former
Control Data engineer that when Seymour Cray was designing the
6600, he happened upon a new chip that was quicker than the one
he was currently using. The problem was that it made occasional
computational errors. Seymour implemented a few slick work-
arounds and went with the new chip. The execs wanted to stay out
of Seymour’s way and not disturb the maestro, as Seymour was
probably the most valuable employee Control Data had. Unfortu-
nately, they also had warehouses full of the original chips. They
couldn’t just throw out the old chips; they had to find a use for them.
This problem gave birth to the CDC 3300, a slower and less expen-
sive version of the 6600.

My point: Seymour went for the faster chip, even though it was
less reliable.

Speed rules.
The result of this tendency is that every commercial operating

system in existence has its memory management services firmly
rooted in data structures and protocols dictated by the hardware.
Processors provide a collection of primitives for manipulating mem-
ory. They constitute the mechanism side of the equation. It is up to
the operating system to decide if it will even use a processor’s
memory management mechanisms and, if so, how it will use them.
Operating systems constitute the policy side of the equation.

In this chapter, I will examine computer hardware in terms of
how it offers a mechanism to access and manipulate memory.

Memory Hierarchy

When someone uses the term “memory,” they are typically refer-
ring to the data storage provided by dedicated chips located on the
motherboard. The storage these chips provide is often referred to
as Random Access Memory (RAM), main memory, and primary stor-

age. Back in the iron age, when mainframes walked the earth, it was
called the core. The storage provided by these chips is volatile,
which is to say that data in the chips is lost when the power is
switched off.

There are various types of RAM:

� DRAM

� SDRAM

� SRAM

Memory Management Mechanisms 3

C
h
a
p
te

r
1

� VRAM

Dynamic RAM (DRAM) has to be recharged thousands of times
each second. Synchronous DRAM (SDRAM) is refreshed at the
clock speed at which the processor runs the most efficiently. Static

RAM (SRAM) does not need to be refreshed like DRAM, and this
makes it much faster. Unfortunately, SRAM is also much more
expensive than DRAM and is used sparingly. SRAM tends to be
used in processor caches and DRAM tends to be used for wholesale
memory. Finally, there’s Video RAM (VRAM), which is a region of
memory used by video hardware. In the next chapter, there is an
example that demonstrates how to produce screen messages by
manipulating VRAM.

Recent advances in technology and special optimizations imple-
mented by certain manufacturers have led to a number of additional
acronyms. Here are a couple of them:

� DDR SDRAM

� RDRAM

� ESDRAM

DDR SDRAM stands for Double Data Rate Synchronous Dynamic
Random Access Memory. With DDR SDRAM, data is read on both
the rising and the falling of the system clock tick, basically doubling
the bandwidth normally available. RDRAM is short for Rambus
DRAM, a high-performance version of DRAM sold by Rambus that
can transfer data at 800 MHz. Enhanced Synchronous DRAM
(ESDRAM), manufactured by Enhanced Memory Systems, provides
a way to replace SRAM with cheaper SDRAM.

A bit is a single binary digit (i.e., a 1 or a 0). A bit in a RAM chip
is basically a cell structure that is made up of, depending on the type
of RAM, a certain configuration of transistors and capacitors. Each
cell is a digital switch that can either be on or off (i.e., 1 or 0). These
cells are grouped into 8-bit units call bytes. The byte is the funda-
mental unit for measuring the amount of memory provided by a
storage device. In the early years, hardware vendors used to imple-
ment different byte sizes. One vendor would use a 6-bit byte and
another would use a 16-bit byte. The de facto standard that every-
one seems to abide by today, however, is the 8-bit byte.

There is a whole set of byte-based metrics to specify the size of a
memory region:

1 byte = 8 bits
1 word = 2 bytes
1 double word = 4 bytes

4 Chapter 1

1 quad word = 8 bytes
1 octal word = 8 bytes
1 paragraph = 16 bytes
1 kilobyte (KB) = 1,024 bytes
1 megabyte (MB) = 1,024KB = 1,048,576 bytes
1 gigabyte (GB) = 1,024MB = 1,073,741,824 bytes
1 terabyte (TB) = 1,024GB = 1,099,511,627,776 bytes
1 petabyte (PB) = 1,024TB = 1,125,899,906,842,624 bytes

NOTE In the 1980s, having a megabyte of DRAM was a big deal.
Kids used to bug their parents for 16KB memory upgrades so their
Atari 400s could play larger games. At the time, having only a mega-
byte wasn’t a significant problem because engineers tended to
program in assembly code and build very small programs. In fact, this
1981 quote is often attributed to Bill Gates: “640K ought to be enough
for anybody.”

Today, most development machines have at least 128MB of DRAM.
In 2002, having 256MB seems to be the norm. Ten years from now,
a gigabyte might be the standard amount of DRAM (if we are still
using DRAM). Hopefully, someone will not quote me.

RAM is not the only place to store data, and this is what leads us
to the memory hierarchy. The range of different places that can be
used to store information can be ordered according to their proxim-
ity to the processor. This ordering produces the following hierarchy:

1. Registers

2. Cache

3. RAM

4. Disk storage

The primary distinction between these storage areas is their mem-

ory latency, or lag time. Storage closer to the processor takes less
time to access than storage that is further away. The latency experi-
enced in accessing data on a hard drive is much greater than the
latency that occurs when the processor accesses memory in its
cache. For example, DRAM latency tends to be measured in nano-
seconds. Disk drive latency, however, tends to be measured in
milliseconds! (See Figure 1.1 on the following page.)

Registers are small storage spaces that are located within the
processor itself. Registers are a processor’s favorite workspace.
Most of the processor’s day-to-day work is performed on data in the
registers. Moving data from one register to another is the single
most expedient way to move data.

Memory Management Mechanisms 5

C
h
a
p
te

r
1

Software engineers designing compilers will jump through all
sorts of hoops just to keep variables and constants in the registers.
Having a large number of registers allows more of a program’s state
to be stored within the processor itself and cut down on memory
latency. The MIPS64 processor has 32, 64-bit, general-purpose reg-
isters for this very reason. The Itanium, Intel’s next generation
64-bit chip, goes a step further and has literally hundreds of
registers.

The Intel Pentium processor has a varied set of registers (see
Figure 1.2). There are six, 16-bit, segment registers (CS, DS, ES,
FS, GS, SS). There are eight, 32-bit, general-purpose registers
(EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP). There is also a 32-bit
error flag register (EFLAGS) to signal problems and a 32-bit
instruction pointer (EIP).

Advanced memory management functions are facilitated by four
system registers (GDTR, LDTR, IDTR, TR) and five mode control
registers (CR0, CR1, CR2, CR3, CR4). The usage of these registers
will be explained in the next few sections.

NOTE It is interesting to note how the Pentium’s collection of regis-
ters has been constrained by historical forces. The design requirement
demanding backward compatibility has resulted in the Pentium having
only a few more registers than the 8086.

A cache provides temporary storage that can be accessed quicker
than DRAM. By placing computationally intensive portions of a pro-
gram in the cache, the processor can avoid the overhead of having

6 Chapter 1

Figure 1.1

to continually access DRAM. The savings can be dramatic. There
are different types of caches. An L1 cache is a storage space that is
located on the processor itself. An L2 cache is typically an SRAM
chip outside of the processor (for example, the Intel Pentium 4
ships with a 256 or 512KB L2 Advanced Transfer Cache).

NOTE If you are attempting to optimize code that executes in the
cache, you should avoid unnecessary function calls. A call to a distant
function requires the processor to execute code that lies outside the
cache. This causes the cache to reload. This is one reason why certain
C compilers offer you the option of generating inline functions. The
other side of the coin is that a program that uses inline functions will
be much larger than one that does not. The size-versus-speed
trade-off is a balancing act that rears its head all over computer
science.

Disk storage is the option of last resort. Traditionally, disk space
has been used to create virtual memory. Virtual memory is memory
that is simulated by using disk space. In other words, portions of
memory, normally stored in DRAM, are written to disk so that the
amount of memory the processor can access is greater than the
actual amount of physical memory. For example, if you have 10MB
of DRAM and you use 2MB of disk space to simulate memory, the
processor can then access 12MB of virtual memory.

Memory Management Mechanisms 7

C
h
a
p
te

r
1

Figure 1.2

NOTE A recurring point that I will make throughout this book is the
high cost of disk input/output. As I mentioned previously, the latency
for accessing disk storage is on the order of milliseconds. This is a long
time from the perspective of a processor. The situation is analogous to
making a pizza run from a remote cabin in North Dakota. If you are
lucky, you have a frozen pizza in your freezer/cache and it will only
take 30 minutes to heat up. If you are not lucky, you will have to call
the pizza delivery guy (i.e., access the data from disk storage) and wait
for five hours as he makes the 150-mile trek to your cabin.

Using virtual memory is like making a deal with the devil. Sure, you
will get lots of extra memory, but you will pay an awful cost in terms
of performance. Disk I/O involves a whole series of mandatory
actions, some of which are mechanical. It is estimated that paging
on Windows accounts for roughly 10% of execution time. Managing
virtual memory requires a lot of bookkeeping on the part of the pro-
cessor. I will discuss the precise nature of this bookkeeping in a
later section.

ASIDE

I worked at an ERP company where one of the VPs used to
fine engineers for performing superfluous disk I/O. During
code reviews, he would grep through source code looking for
the fopen() and fread() standard library functions. We
were taught the basic lesson that you cached everything you
possibly could in memory and only moved to disk storage
when you absolutely had no other alternative (and even then
you needed permission). To the VP’s credit, the company’s
three-tier middleware suite was the fastest in the industry.

Disk storage has always been cheaper than RAM. Back in the 1960s
when 8KB of RAM was a big investment, using the disk to create
virtual memory probably made sense. Today, however, the cost dis-
crepancy between DRAM and disk drives is not as significant as it
was back then. Buying a machine with 512MB of SDRAM is not
unheard of. It could be that virtual memory will become a complete
relic or implemented as some sort of emergency safeguard.

8 Chapter 1

Address Lines and Buses

Each byte in DRAM is assigned a unique numeric identifier called
an address, just like houses on a street. An address is an integer
value. The first byte in memory is assigned an address of zero. The
region of memory near address zero is known as the bottom of mem-

ory, or low memory. The region of memory near the final byte is
known as high memory. The number of physical (i.e., DRAM) bytes
that a processor is capable of addressing is known as the processor’s
physical address space. (See Figure 1.3.)

The physical address space of a processor specifies the potential

number of bytes that can be addressed, not the actual number of
physical bytes present. People normally don’t want to spend the
money necessary to populate the entire physical address space with
DRAM chips. Buying 4GB of DRAM is still usually reserved for
high-end enterprise servers.

The physical address space of a processor is determined by the
number of address lines that it has. Address lines are a set of wires
connecting the processor to its DRAM chips. Each address line
specifies a single bit in the address of a given byte. For example, the
Intel Pentium has 32 address lines. This means that each byte is
assigned a 32-bit address so that its address space consists of 232

addressable bytes (4GB). The 8088 had 20 address lines, so it was
capable of addressing 220, or 1,048,576, bytes.

NOTE If virtual memory is enabled on the Pentium 4, there is a way
to enable four additional address lines using what is known as Physical
Address Extension (PAE). This allows the Pentium processor’s physical
address space to be defined by 36 address lines, which translates into
an address space of 236 bytes (64GB).

Memory Management Mechanisms 9

C
h
a
p
te

r
1

Figure 1.3

To access and update physical memory, the processor uses a control
bus and a data bus. A bus is a collection of related wires that connect
the processor to a hardware subsystem. The control bus is used to
indicate if the processor wants to read from memory or write to
memory. The data bus is used to ferry data back and forth between
the processor and memory. (See Figure 1.4.)

When the processor reads from memory, the following steps are
performed:

1. The processor places the address of the byte to be read on the
address lines.

2. The processor sends the read signal on the control bus.

3. The DRAM chip(s) return the byte specified on the data bus.

When the processor writes to memory, the following steps are
performed:

1. The processor places the address of the byte to be written on
the address lines.

2. The processor sends the write signal on the control bus.

3. The processor sends the byte to be written to memory on the
data bus.

This description is somewhat of an oversimplification. For example,
the Pentium processor reads and writes data 4 bytes at a time. This
is one reason why the Pentium is called a 32-bit chip. The processor
will refer to its 32-bit payload using the address of the first byte
(i.e., the byte with the lowest address). Nevertheless, I think the
general operation is clear.

10 Chapter 1

Figure 1.4

Intel Pentium Architecture

You have seen how a processor reads and writes bytes to memory.
However, most processors also support two advanced memory man-
agement mechanisms: segmentation and paging.

Segmentation is instituted by breaking up a computer’s address
space into specific regions, known as segments. Using segmentation
is a way to isolate areas of memory so that programs cannot inter-
fere with one another. Segmentation affords what is known as
memory protection. It is possible to institute memory segmentation
without protection, but there are really no advantages to such a
scheme.

Under a segmentation scheme that enforces memory protection,
each application is assigned at least one segment. Large applications
often have several segments. In addition, the operating system will
also have its own custom set of segments. Segments are assigned a
specific set of access writes so that policies can be created with
regard to who can update what. Typically, the operating system code
segments will execute with the highest privilege and applications
will be loaded into segments with less authority.

Paging is a way to implement virtual memory. The physical memory
provided by DRAM and disk storage, which is allocated to simulate
DRAM, are merged together into one big amorphous collection of
bytes. The total number of bytes that a processor is capable of
addressing, if paging is enabled, is known as its virtual address

space.

Memory Management Mechanisms 11

C
h
a
p
te

r
1

Figure 1.5

The catch to all this is that the address of a byte in this artifi-
cial/virtual address space is no longer the same as the address that
the processor places on the address bus. This means that transla-
tion data structures and code will have to be established in order to
map a byte in the virtual address space to a physical byte (regard-
less of whether that byte happens to be in DRAM or on disk).

When the necessary paging constructs have been activated, the
virtual memory space is divided into smaller regions called pages. If
the operating system decides that it is running low on physical
memory, it will take pages that are currently stored in physical
memory and write them to disk. If segmentation is being used,
bookkeeping will have to be performed in order to match a given
page of memory with the segment that owns it. All of the account-
ing work is done in close conjunction with the processor so that the
performance hit associated with disk I/O can be kept to a minimum.

NOTE When pages of data are stored in physical memory (i.e.,
DRAM), they are placed in page-sized slots that are known as page

frames. In addition to keeping track of individual pages, most operat-
ing systems also monitor page frame usage. The number of page
frames is usually much smaller than the number of pages, so it is in
the best interest of the operating system to carefully manage this pre-
cious commodity.

NOTE It is possible to use paging without using disk space. But in
this case, paging transforms into a hybrid form of segmentation that
deals with 4KB regions of memory.

12 Chapter 1

Figure 1.6

Because Intel’s Pentium class of processors is easily accessible, I
decided to use the Pentium to help illustrate segmentation and pag-
ing. I would love to demonstrate theory with a MIPS64 processor,
but I can’t afford an SGI server (sigh). Being inexpensive is one of
the primary reasons for Intel’s continued success. Hackers, like me,
who couldn’t afford an Apple IIe back in the 1980s were left
scrounging for second-hand Intel boxes. There were thousands of
people who had to make this kind of financial decision. So, in a
sense, the proliferation of Intel into the workplace was somewhat of
a grass roots movement.

The Pentium class of processors is descended from a long line of
popular CPUs:

CPU Release Date Physical Address Space

8086 1978 1MB
8088 1979 1MB
80286 1982 16MB
80386 1985 4GB
80486 1989 4GB
Pentium 1993 4GB
Pentium Pro 1995 64GB
Pentium II 1997 64GB
Pentium III 1999 64GB
Pentium 4 2000 64GB

NOTE When the IBM PC came out in 1981, it shipped with a 4.77
MHz 8088. Without a doubt, mainframe developers were overjoyed.
This was because the PC gave them a place of their own. In those
days, the standard dummy terminals didn’t do anything more than
shuttle a data buffer back and forth to a mainframe. In addition, an
engineer had little or no control over when, or how, his code would be
run. The waiting could be agonizing. Tom Petty was right. Bribing a
sysop with pizza could occasionally speed things up, but the full court
grovel got tiring after a while. With an IBM PC, an engineer finally had
a build machine that was open all night with no waiting.

ASIDE

I know one CDC engineer, in particular, who ported a FOR-
TRAN ’77 compiler to a PC in 1982 for this very reason. His
supervisor would walk over and say: “Why do you want to run
on that little three-wheeler instead of the production ma-
chine?” His answer: “Because it is mine, damn it.” This one
statement probably summarizes the mindset that made PCs
wildly successful.

Memory Management Mechanisms 13

C
h
a
p
te

r
1

In an attempt to keep their old customers, Intel has gone to great
lengths to make their 32-bit processors backward compatible with
the previous 16-bit models. As testimony to Intel’s success, I can
boot my laptop with a DOS 6.22 boot disk and run most of my old
DOS applications (including Doom and Duke Nukem).

A product of the requirement for backward compatibility is that
the Pentium chip operates in a number of different modes. Each
mode dictates how the processor will interpret machine instructions
and how it can access memory. Specifically, the Pentium is capable
of operating in four modes:

� Real mode

� Protected mode

� System management mode (SMM)

� Virtual 8086 mode

System management mode and virtual 8086 mode are both special-
purpose modes of operation that are only used under special cir-
cumstances. I will focus primarily on the first two modes of
operation: real mode and protected mode. In addition, I will investi-
gate how each of these modes support segmentation and paging.

Having the processor operate in different modes is not a feature
limited to the Intel platform. The MIPS64 processor, for example,
also operates in four modes:

� Kernel mode

� User mode

� Debug mode

� Supervisor mode

Real Mode Operation

The first IBM PC ran strictly in real mode. Furthermore, all 32-bit
Intel computers also start in real mode when they are booted. This
sort of provides a least common denominator behavior that back-
ward compatibility depends upon.

Real mode operating systems tend to be very small (i.e., less
than 128KB) because they rely on the BIOS to provide an interface
to the hardware. This allows them to easily fit on a 1.44MB floppy
diskette. Virus protection rescue disks rely on this fact, as do sys-
tem repair disks. I have also bought drive partitioning software that
can be run from a boot disk.

In real mode, the general-purpose registers we saw earlier in
Figure 1.2 are truncated into 16-bit registers, as are the error flag

14 Chapter 1

and instruction pointer registers. The real mode register setup is
displayed in Figure 1.7.

As you can see, the “E” prefix has been removed from the regis-
ter names. In addition, each of the 16-bit general registers, AX, CX,
DX, and EX, can be manipulated in terms of two 8-bit registers. For
example, the AX register can be seen as the combination of the AH
and AL registers. The AH register refers to the high byte in AX,
and the AL register refers to the low byte in AX.

NOTE The memory and mode registers shown in Figure 1.2 are still
visible in real mode. They still exist if the processor is a 32-bit class
CPU but they have no significance or use in real mode. The only
exception to this rule is if you are trying to switch to protected mode.

A machine in real mode can address 1MB of DRAM. This implies
that only 20 address lines are used in real mode. The address of a
byte in memory, for a processor real mode, is formed by adding an
offset address to a segment address. The result of the sum is always
a 20-bit value (remember this fact; it is important), which confirms
our suspicion that there are 20 address lines.

The address formed by the sum of the segment and offset
addresses corresponds directly to the value that is placed on the
processor’s address lines. Now you can get a better idea of why
they call it “real” mode. The address of a byte in real mode maps
directly to a “real” byte in physical memory.

Memory Management Mechanisms 15

C
h
a
p
te

r
1

Figure 1.7

An address is denoted, in Intel assembly language, by a seg-
ment:offset pair. For example, if a byte is located in segment
0x8200 and is situated at an offset of 0x0100, the address of this
byte is specified as:

0x8200:0x0100

Sometimes, for reasons that I will explain later, this is also written
as:

0x8200[0]:0x0100

The real mode address resolution process is displayed in Figure 1.8.

Segment addresses denote a particular memory segment and are
always stored in one of the 16-bit segment registers. Specifically, a
segment address specifies the base address, the lowest address, of a
memory segment. Each segment register has a particular use:

Register Use

CS Segment address of code currently being executed
SS Segment address of stack
DS Data segment address
ES Extra segment address (usually data)
FS Extra segment address (usually data)
GS Extra segment address (usually data)

NOTE The fact that there are six segment registers means that at
any time, only six segments of memory can be manipulated. A pro-
gram can have more than six segments, but only six can be accessible
at any one point in time.

16 Chapter 1

Figure 1.8

Offset addresses can be stored in the general registers and are 16
bits in size. Given that an offset address is 16 bits, this limits each
segment to 64KB in size.

QUESTION
If the segment address and offset address are both stored in

16-bit registers, how can the sum of two 16-bit values form a
20-bit value?

ANSWER
The trick is that the segment address has an implicit zero

added to the end. For example, a segment address of 0x0C00 is
treated as 0x0C000 by the processor. This is denoted, in practice,
by placing the implied zero in brackets (i.e., 0x0C00[0]). This is
where the processor comes up with a 20-bit value.

As you can see, the real mode segment/offset approach does provide
a crude sort of segmentation. However, at no point did I mention
that the boundaries between segments are protected. The ugly
truth is that there is no memory protection in real mode. When you
run a program in real mode, it owns everything and can run amok if
it wants.

Running an application in real mode is like letting a den of Cub
Scouts into your home. They’re young, spirited, and all hopped-up
on sugar. If you’re not careful, they will start tearing the house
down. Crashing a real mode machine is simple, and there is little
you can do to prevent it (other than back up your work constantly).

In case you are wondering, and I’m sure some of you are, here is
an example of a C program that can crash a computer running in real
mode:

/* --crashdos.c-- */

void main()

{

unsigned char *ptr;

int i;

ptr = (unsigned char *)0x0;

for(i=0;i<1024;i++)

{

ptr[i]=0x0;

}

return;

}

See how little effort it takes? There is nothing special or secret
about this attack. I just overwrite the interrupt vector table that is

Memory Management Mechanisms 17

C
h
a
p
te

r
1

located at the bottom of memory. If you wanted to hide this type of
code in a large executable, you could probably cut down the program
to less than five lines of assembly code.

If you really wanted to be malicious, you could disable the key-
board and then start reformatting the hard drive. The only defense a
person would have is to yank the power cord, and even then, by the
time they realize what is going on, it would probably be too late. My
point, however, is not to tell you how to immobilize a DOS machine.
Nobody uses them anymore, anyway. My motive is to demonstrate
that real mode is anything but a secure environment.

To make matters worse, real mode does not support paging. All
you have to play with is 1MB of DRAM. In reality, you actually have
less than 1MB because the BIOS and video hardware consume size-
able portions of memory. Remember the Bill Gates quote?

NOTE No memory protection? No paging? Now you understand
how the first version of PC-DOS was less than 5,000 lines of assem-
bler. Perhaps “real” mode is called such because it is really minimal.

Intel’s processors would never have made inroads into the enter-
prise with this kind of Mickey Mouse memory management. In an
attempt to support more robust operating systems and larger
address spaces, Intel came out with the 80386. The 80386 had a
physical address space of 4GB and supported a new mode of opera-
tion: protected mode.

Protected Mode Operation

Protected mode supplies all the bells and whistles that are missing
in real mode. The Pentium processor was specifically designed to
run in protected mode. Its internal plumbing executes 32-bit
instructions more efficiently than it executes 16-bit instructions.
Having the Pentium start in real mode during a machine’s power-up
was sort of a courtesy that the Intel engineers have extended to
help operating systems bootstrap.

An Intel processor running in protected mode supports protected
segmentation, and it also can support paging. This means that
address resolution will be much more complicated. In real mode, we
just added an offset address to a segment address to produce a value
that corresponded directly to physical memory address. In protected
mode, the processor expects a whole load of special data structures
to be in place. In addition, the segment and offset pair may no longer
correspond directly to a physical address. So hang on, here we go...

18 Chapter 1

Protected Mode Segmentation

The best way to understand segmentation on Intel is to take a visual
look at how it is implemented. A picture is worth 1,024 words, and
that is particularly true in this case. So take a good, hard look at
Figure 1.9 and compare it to Figure 1.8. You might also want to
bookmark Figure 1.9 so that you can return to it when needed.

The first thing to note is that protected mode uses the full-blown
set of Pentium registers displayed in Figure 1.2. Back to 32-bit reg-
isters we go. Also, the segment registers no longer store 16-bit
segment address values. Instead, it holds what is known as a seg-

ment selector.
A segment selector is a 16-bit data structure containing three

fields. Its composition is displayed in Figure 1.10. The really impor-
tant field is the index field. The index field stores an index to a
descriptor table. Index values start at zero.

NOTE The index field in the segment selector is not an address. It is
an index like the kind of index you would use to access an array ele-
ment in C. The processor will take the index and internally do the
necessary math to match the index to the linear address corresponding
to that index. Note that I said linear address, not physical address. For
the time being, linear and physical addresses are the same, but when
paging is enabled, they are not. Keep this in mind.

Memory Management Mechanisms 19

C
h
a
p
te

r
1

Figure 1.9

A descriptor table is an array of entries in which each entry (known
as a segment descriptor) describes the attributes of a specific mem-
ory segment. Included in a descriptor is the base address of the
memory segment that it describes. The 32-bit offset address is
added to the segment descriptor’s base address in order to specify
the address of a byte in memory.

There are two types of descriptor tables: the Global Descriptor

Table (GDT) and the Local Descriptor Table (LDT). Every operating
system must have a GDT, but having one or more LDT structures is
optional. Usually, if an LDT is to be used, it will be utilized to repre-
sent the memory segments belonging to a specific process. The
base address of the GDT is stored in the GDTR system register.
Likewise, the base address of the LDT is stored in the LDTR regis-
ter. Naturally, there are special system instructions to load these
registers (i.e., the LGDT and LLDT instructions).

NOTE Almost all of the operating systems this book examines focus
on the GDT and offer very minimal use of the LDT (if they use it at all).

The GDTR is 48 bits in size. One unusual characteristic of the
GDTR is that it stores two distinct values. The first 16 bits contain
the size limit, in bytes, of the GDT. The next 32 bits store the base
linear address of the GDT in physical memory. This is illustrated in
Figure 1.11.

20 Chapter 1

Figure 1.10

Figure 1.11

QUESTION
How does the processor map a segment selector’s index to a

descriptor?

ANSWER
The processor takes the index, specified by the segment

selector, multiplies the index by eight (as in 8 bytes because
descriptors are 64 bits in length), and then adds this product to
the base address specified by GTDR or LDTR.

NOTE In case you are looking at Figure 1.2 and wondering about
the other two memory management registers, IDTR and TR, I did not
forget them. They are not as crucial to this discussion as GDTR and
LDTR. The IDTR and TR registers are used to manage hardware inter-
rupts and multitasking. This book is focused on pure memory
management, so I will not discuss these registers in any detail. If you
happen to be interested, I recommend that you pick up the Intel man-
ual referenced at the end of this chapter.

Earlier I mentioned that segment descriptors store the base linear
address of the memory segment they describe. However, they also
hold a whole lot of other metadata. Figure 1.12 should give you a
better idea of what lies within a segment descriptor. In this figure, I
have broken the 64-bit descriptor into two 32-bit sections. The
higher-order section is on top of the lower-order section.

There is a lot of information packed into those 64 bits. As you can
see, several fields are broken up and stored in different parts of the

Memory Management Mechanisms 21

C
h
a
p
te

r
1

Figure 1.12

descriptor. There are two fields that might not be obvious just from
looking at Figure 1.11. First is the SS flag, which indicates whether
the segment is a system segment or just a normal code/data segment.
A system segment, in case you are scratching your head, is a seg-
ment that is used to provide interrupt handling and multitasking
services. I will not investigate either of those subjects.

NOTE You will see a number of 1-bit flags in the following few sec-
tions. For future reference, a bit is set when it is one. A bit is cleared

when it is zero. Low-level operating system code is rife with bit-based
manipulation. There is no way around it. Engineers who work with
high-level languages tend to look down on engineers who write this
type of low-level code. They are called bit-bashers or bit-twiddlers. Pro-
grammers can be cruel.

Assuming that the SS flag is set, the 4-bit type field in the
descriptor describes the specific properties of the segment:

Table 1.1

Bit

Type Description11 10 9 8

0 0 0 0 data read-only

0 0 0 1 data read-only, accessed

0 0 1 0 data read-write

0 0 1 1 data read-write, accessed

0 1 0 0 data read-only, expand down

0 1 0 1 data read-only, expand down,
accessed

0 1 1 0 data read-write, expand down

0 1 1 1 data read-write, expand down,
accessed

1 0 0 0 code execute-only

1 0 0 1 code execute-only, accessed

1 0 1 0 code execute-read

1 0 1 1 code execute-read, accessed

1 1 0 0 code execute-only, conforming

1 1 0 1 code execute-only, conforming,
accessed

1 1 1 0 code execute-read, conforming

1 1 1 1 code execute-read, conforming,
accessed

Accessed memory segments are segments that have been recently
accessed so that bit 8 is set. Expand down segments are useful for
creating stacks because they support memory constructs, which
grow from high memory down toward low memory. Conforming

code segments allows less privileged code segments to jump to
them and execute their code at the lower privilege level.

22 Chapter 1

Security-conscious system engineers would be wise to exercise
caution with regard to the circumstances in which they allow oper-
ating system segments to be conforming.

QUESTION
OK, so we understand how the segments are referenced and

what kind of metadata the segment descriptors store. How are
these memory segments protected?

ANSWER
As it turns out, the segment selector and segment descriptor

contain most of the information needed to implement a protec-
tion scheme. The processor makes ample use of this metadata to
track down memory access violations.

For example, the limit field in the segment descriptor is used
to help keep memory from being referenced beyond the desig-
nated last byte of a memory segment. Also, the type field in the
segment descriptor ensures that a segment that is specified as
read-only is not written to. The privilege fields in the segment
selector and segment descriptor are used by the processor to
prevent a program from illegally executing code or data that has
a higher privilege.

NOTE It is easy to get confused. 0x00 is the highest privilege even
though it is the lowest number.

Privilege levels are how the operating system prevents user appli-
cations from manipulating the kernel image and compromising
security. In the real mode discussion, you saw how easy it was to
cause havoc and crash the system. I merely waltzed over to the
interrupt vector table and erased it. In protected mode, this threat
can be dealt with. Vital data structures and operating system code
can be safeguarded at the hardware level.

Intel supports four different privilege levels (0-3). Another way
to say this is that Intel supports four rings of protection. These rings
are illustrated in Figure 1.13 on the following page. This is actually a
pretty simple scheme as far as memory protection is concerned.
Decades ago when Control Data was building the NOSVE operating
system, the architects wanted to have 15 rings of protection! The
odd thing about contemporary operating systems like Linux and
Windows is that they only implement two rings of protection (one
for the kernel and another for everything else). They don’t take full
advantage of the facilities offered by the Pentium.

Memory Management Mechanisms 23

C
h
a
p
te

r
1

When a memory location is referenced, the processor performs a
series of checks. These checks occur at the same time that the
memory address is resolved to its physical location. Because these
checks are performed concurrently with the address resolution
cycle, there is no performance hit. This is the true beauty of push-
ing memory management down to the hardware.

If one of the processor’s various checks discovers a protection
violation, the processor will generate an exception. An exception is a
signal produced by the processor. Exceptions are caught and pro-
cessed using a variation of the processor’s interrupt handling
features. The exact steps taken are beyond the scope of this discus-
sion. In very general terms, the processor will use special data
structures, like the Interrupt Descriptor Table (IDT), to hand off
exceptions to the operating system, which can then decide what to
do. The operating system is actually responsible for establishing and
setting up things like the IDT on behalf of the processor when it
bootstraps. This allows the operating system the freedom to regis-
ter special handlers with the IDT so that the appropriate routines
can be invoked when a memory violation occurs.

When a memory exception occurs in Windows, a dialog box will
typically appear to announce an access violation and Windows will
terminate your program. To see what I mean, compile and run the
following program under Windows:

24 Chapter 1

Figure 1.13

/* --overflow.c-- */

#include<stdio.h>

void main()

{

int array[4];

int i;

for(i=0;i<100;i++)

{

array[i]=i;

printf("set array[%d]=%d\n",i);

}

return;

}

There is a blatant array overflow in the code above. When you run
this application, it will crash and Windows will present you with a
dialog box like the one shown in Figure 1.14. If you’ve never seen a
dialog box like this before, take a good look. If you do any sort of
pointer-intensive development on Windows, you are bound to see it
sooner or later.

I have not said much about the control registers. The only control
register relevant to this current section is the CR0 control register.
We’ll see a couple of the other control registers in the next section.
The CR0 register’s first bit (the lowest-order bit) is known as the
PE flag (as in Protected Enable). By setting the PE flag to 1, we
switch the processor into protected mode and enable all of the seg-
ment protection features discussed earlier. Here is a snippet of
assembly code that performs this crucial task:

MOV EAX,CR0

OR AL,1

MOV CR0,EAX

Another equivalent way to do this is to use the special-purpose
SMSW and LMSW system instructions:

SMSW AX

OR AL,1

LMSW AX

Memory Management Mechanisms 25

C
h
a
p
te

r
1

Figure 1.14

You’ve heard a lot of terms bandied about here: selector, descriptor,
etc. If this is your first time reading about protected mode, you may
still be confused about what is what. Here is a short summary to
help you keep all the cast members of this sitcom organized:

Cast Member Purpose

Segment selector Selects a descriptor in a descriptor
table

Segment descriptor Describes a memory segment
(metadata)

Descriptor table Holds an array of segment descriptors
Descriptor table register Stores the base address of the

descriptor table

If paging has not been enabled, the final address produced by the
scheme in Figure 1.9 is also a physical address, which is to say that
it is the same 32-bit value that the processor places on its 32
address lines.

If paging is enabled, this is not the case; this leads us to the next
section.

Protected Mode Paging

When paging is enabled, the address resolution scheme in Figure
1.9 becomes a bit more complicated. Take a look at Figure 1.15.
Take a deep breath, and try not to panic.

26 Chapter 1

Figure 1.15

Basically, we have taken the address resolution process in Figure
1.9 and appended it with several steps so that we can accommodate
all of the extra bookkeeping needed for paging. The address formed
by the segment descriptor and the offset address in Figure 1.9 is no
longer the address of a byte in physical memory. Instead, a 32-bit
quantity is formed that is composed of three distinct offset
addresses. Two of these offset addresses are 10 bits in size and the
remaining offset address is 12 bits in size.

NOTE I will refer to this three-part, 32-bit quantity as a linear

address to help distinguish it from the physical address of a byte in
memory. The GDTR register holds the linear address of the base of the
GDT data structure. Now you know why I emphasized this distinction
earlier.

Code that runs in protected mode with paging enabled lives in the
alternate reality of linear addresses. Such code deals with “fake”
32-bit addresses that seem real enough to the code. Behind the
scenes, the processor resolves fake/linear addresses to addresses that
specify actual physical storage.

NOTE Paging facilities on the Intel platform were first introduced so
that the processor could backfill unused areas of system memory
(0xB0000 to 0xFFFFF) with the EMM386.EXE program.

The last 10 bytes of the linear address are an offset address of an
entry in the page directory. The page directory is just an array of
32-bit entries whose base address is stored in the CR3 control reg-
ister. A page directory’s entry contains, among other things, the
base address of a page table.

Given that a page directory entry has referenced the base
address of a certain page table, the middle 10 bytes of the linear
address serve as an offset address into that page table. This offset
address references a 32-bit page table entry. The 32-bit page table
entry contains, among other things, the base address of an actual
4KB page of memory.

This is where the first 12 bytes of the linear address come into
play. These 12 bytes form an offset address that is added to the base
address in the page table entry. The sum of these values forms an
actual physical address of a byte in virtual memory. This byte is
either in DRAM or has been paged to disk. You might also notice
that a 12-bit offset limits the size of the memory page, in this case,
to 4,096 bytes (4KB).

NOTE The base address stored in the page table entry is 20 bits in
size. The processor assumes that these are the 20 most significant bits
in a 32-bit base address, which is another way to say that the extra 12
bits are implied and all zero.

Memory Management Mechanisms 27

C
h
a
p
te

r
1

For example, a base address of: 0xCAFEB

is really: 0xCAFEB[0][0][0].
This is similar to real mode, where the segment address, expressed

in hexadecimal, has a single implied zero at the end. This convention
guarantees that the base address of a page always occurs in multiples
of 4KB.

NOTE Most operating systems assign each process their own page
directory so that each program’s linear address space maps to a differ-
ent section of physical storage. This guarantees, as long as the page
structures entries are not the same, that one process will not be able
to access the physical memory of another process.

If the byte referenced in the page is in physical memory, then we
are done. If the byte is not in memory, then a page fault is generated.
When this happens, the processor will produce a page fault and hand
it off to the local operating system using the exception handling data
structures. The operating system is expected to set these data
structures up. The operating system, once it has received the fault
signal, will then load the page containing this byte into DRAM so
that it can be manipulated. Page faults are the backbone of virtual
memory on the Intel hardware.

Now you know why your computer’s hard drive goes crazy when
you have too many applications running. The computer is busy
moving programs, or parts of programs, on and off the hard drive.
Thrashing occurs when you have so many applications loaded that
the computer is too busy managing them and has no time to actually
run them.

NOTE For the sake of simplicity (and sanity) I am going to stick to a
4KB paging scheme that uses only 32 address lines. This is shown in
Figure 1.15. Intel has paging schemes where the page size is 4MB or
2MB. However, I don’t see much use for a 4MB or 2MB paging
scheme. Perhaps these larger paging settings were introduced to help
kernels save their own images. There are high-availability operating
systems, like EROS, that periodically save an image of the entire oper-
ating system. The only thing that would make these two larger paging
schemes valuable, in the traditional sense, would be dramatic
advances in disk I/O hardware.

Let’s take a closer look at what the page directory and page table
entries look like. (See Figure 1.16.)

A page directory entry has a number of special-purpose flags
related to caching that I am not going to go into. The really impor-
tant fields of the entry are the base address of the page table and the
page size (PS) flag. The present flag (P) is maintained by the local
operating system and is used to indicate if the page table is present
in memory. If it is not, the page table will need to be loaded via a

28 Chapter 1

page fault so that the address resolution cycle can continue. Most
operating systems, however, are wise enough to leave their crucial
data structures in memory.

The layout of a page table entry is displayed in Figure 1.17. As
you can see, it is very similar to the setup of the page directory
entry. The difference is that the fields in a page directory entry are
concerned with a page table. The fields in the page table entry are
concerned with a 4KB page of memory.

Memory Management Mechanisms 29

C
h
a
p
te

r
1

Figure 1.16

Figure 1.17

One new thing you might notice is the dirty bit. The dirty bit indi-
cates that the page being referenced has been written to recently.
The present (P) flag and the dirty (D) flag are both used by the
operating system to help manage the process of paging. The operat-
ing system will usually clear the dirty flag when a page is loaded
into DRAM for the first time. The processor will then set the dirty
bit the first time that the page is updated.

You’ve already seen how the PE bit in CR0 is used to switch the
processor into protected mode. Using the paging facilities of the
processor requires even more participation of the control registers.
Figure 1.18 displays a summary of important control registers.
Reserved areas that should not be modified are shaded gray.

The CR0 is used to control the processor mode and state of the pro-
cessor. In the last section, we took a look at the PE flag, which is
responsible for placing the processor in protected mode. The other
really important flag in CR0, as far as paging is concerned, is the PG
flag at the other end of the register. When the PG flag is set, the
processor is enabled for paging. When the PG flag is cleared, linear
addresses are treated like physical addresses.

The CR1 is reserved, which is a nice way to say that it isn’t used
for anything. This is why I didn’t include it in Figure 1.18. For the
remainder of this section, you can ignore CR1. My guess is that
CR1 may have been created for the sake of some future use.

30 Chapter 1

Figure 1.18

NOTE Digging a well before you are thirsty is not a bad idea. Any
software architects worth their salt will make accommodations for
future modification and extension. If you have ever worked with the
Win32 API, you will, no doubt, have noticed a number of ambiguous
void* function parameters reserved for future use.

The CR2 register is used to store the linear address that has caused
a page fault. Mercifully, this value takes up the entire register.

The CR3 plays a central role in the resolution of physical
addresses when paging has been enabled. Specifically, this register
holds the base address of the page directory. If you look at Figure
1.15, you will see that CR3 plays a vital role in the address resolu-
tion process. If CR3 is corrupt, you can kiss your memory manager
goodbye. The other two flags (PCD and PWT) in this register are
related to caching and are not directly relevant to the immediate
discussion.

The CR4 register is used to enable a couple of advanced mecha-
nisms. For example, the PAE flag enables four extra address lines
when it is set. This would bring the number of address lines to 36.
Note that the PG flag must be set in CR0 in order for PAE to be
effective. Another flag of interest is the PSE bit. If PSE is cleared to
zero, the page size is 4KB. If PSE is set, the page size is 4MB. If
both PAE and PSE are set, the page size is 2MB.

Paging as Protection

Traditionally, paging has been used to artificially expand the amount
of memory to which a processor has access. Nevertheless, the Intel
architecture has embedded enough functionality into its paging
scheme that it is possible to use only paging facilities to implement
memory protection. In fact, if you wanted to push the envelope, you
could turn off segmentation-based protection and rely completely on
paging to provide memory protection. Naturally, this kind of sce-
nario is a little unusual, and there are a few conditions that need to
be satisfied.

The first condition is that a flat memory model is implemented. In
a flat memory model, there is one big segment. It is the simplest
possible memory model that can be used in protected mode. Every-
thing shares the same memory segment, and all the protective
services provided by segmentation are thrown to the wind. A flat
memory model is implemented by creating a GDT with three
entries. The first entry to the GDT is never used for some reason,
so in a sense it is just a placeholder. The second and third
descriptors are used to represent code and data segments. The trick
is to have both descriptors point to the same segment. The segment

Memory Management Mechanisms 31

C
h
a
p
te

r
1

these descriptors point to has base address 0x00000000 and a size
limit of 4GB. The size limit is set to the maximum possible value
(0xFFFFFFFF) in order to prevent “outside of limit” exceptions
from being thrown.

If you use a segment register in an assembly code instruction,
like DS, ES, or CS, it must contain a segment selector that indexes
one of the two valid descriptors in the GDT. Keep in mind that there
are three possible selectors. Two of the three possible segment
selectors point to the code and data segment descriptors. There is
also a segment selector that points to the vacant segment
descriptor, called a null selector. Assuming a privilege of zero is used,
these three selectors will look like this:

Segment Descriptor Segment Selector

0 0 (a.k.a. null selector)
1 0x08
2 0x10

The flat memory model setup is displayed in Figure 1.19.

NOTE Don’t forget about the first segment descriptor (index = 0) in
the GDT being vacant. This is a tricky point, and the Intel docs seem to
mention it only in passing.

32 Chapter 1

Figure 1.19

Given that a flat memory model is implemented, none of the tradi-
tional segmentation checks can be performed. This leaves us with
two ways to protect areas of memory, assuming that paging has
been enabled. Both of these paging-based mechanisms rely on the
information in page table entries.

If you look back at Figure 1.17, you will see that there is a
read-write flag (bit 1) and also a user-supervisor flag (bit 2). The
user-supervisor flag can be used to institute a two-ring security
scheme. For example, by placing pages that constitute the operating
system in supervisor mode and application pages in user mode, the
kernel can be protected from malicious programs. If a user applica-
tion attempts to access pages that are in supervisor mode, the
processor will generate a page fault.

The read-write flag can be used to help enforce the user-supervi-
sor division. Specifically, when the processor is executing code in a
supervisor page, it can read and write anything. In other words, the
read-only flag for other memory pages is ignored. However, if the
processor is executing code in a user page, it can only read and
write to other user-level pages. If it tries to access a page marked
with supervisor status, the processor generates a page fault. A user
page’s ability to access other user pages depends on the status of
their read-write flags, which is to say that user-level code must
obey the read/write permissions of all the other pages.

Addresses: Logical, Linear, and Physical

I have made certain distinctions between types of addresses in this
chapter. It is easy to get them confused. I am going to try to rein-
force this distinction by devoting an entire section to the topic. On
Intel hardware, there are three types of addresses:

� Physical

� Logical

� Linear

Take a look at Figure 1.20 on the following page, which shows the
entire address resolution cycle when both segmentation and paging
are used.

A physical address is the address of a byte in DRAM. It is the
value that the processor places on its address lines in order to
access a value in chip-based memory.

The logical address is the address that is specified by the segment
register and the general register. Only in real mode does the logical
address correspond to a physical address. This is because real mode

Memory Management Mechanisms 33

C
h
a
p
te

r
1

doesn’t use segmentation or paging and Figure 1.19 does not apply
at all. You might also want to keep in mind that the offset portion of
a logical address does not necessarily have to be stored in a general
register; I am just using a general register for the sake of
illustration.

The linear address is the 32-bit value that is formed using the
base address value in the segment descriptor and the offset value in
the general register. If paging is not being used, the linear address
corresponds to an actual physical address.

If paging facilities are being used, the linear address will be
decomposed into three parts and the whole page directory/page
table cycle will need to be performed in order to arrive at a physical
address.

Page Frames and Pages

This is another area where confusion can creep in. I can remember
confusing pages and page frames when I first started looking at
memory management. A page frame is not the same as a page.
When paging is enabled, physical memory (i.e., DRAM) is divided
into 4KB units called page frames. This is analogous to a picture
frame, which is empty until you place a photograph in it. A page

frame specifies a particular plot of real estate in physical memory. A
page, on the other hand, is just a chunk of 4,096 bytes that can
either reside on disk or be loaded into a page frame in physical

34 Chapter 1

Figure 1.20

memory. If a page of data is stored on disk, and a program attempts
to access that page, a page fault is generated. The native operating
system is responsible for catching the fault and loading the page into
an available page frame. The operating system will also set the
present flag (P) in the page’s corresponding page table entry.

The relationship between pages and page frames is illustrated in
Figure 1.21.

Case Study: Switching to Protected Mode

You’ve just waded through a mountain of theory. It’s time to take a
look at protected mode in practice. In this section, I am going to
walk you through jumping from real mode to protected mode. To
save myself from being labeled a sadist, I am going to stick to pure
segmentation without enabling paging.

NOTE The following program was written in Intel 80x86 assembler.
If you are not familiar with Intel assembly code, you should pick up
Barry Brey’s book, mentioned in the “References” section of this
chapter.

Switching to protected mode is a dance that has six steps:

1. Build the GDT

2. Disable interrupts

Memory Management Mechanisms 35

C
h
a
p
te

r
1

Figure 1.21

3. Enable the A20 address line

4. Load the GDTR register

5. Set the PE flag in CR0

6. Perform a long jump

Switching to protected mode is perilous enough that you’ll want to
disable interrupts so that you have the undivided attention of the
processor. Otherwise, you’ll run the risk that an interrupt will occur
and the processor will have to drop everything and service it. While
the processor runs the interrupt handler, instructions could be exe-
cuted that change the state of your machine enough to foil your
attempt to switch modes.

NOTE Disabling interrupts is how many processors implement the
atomic operations needed to maintain semaphores. By disabling inter-
rupts, you can halt any extraneous activity (like a task switch), and this
is what allows a snippet of code to run “atomically.” I must have
trudged through seven or eight books on operating systems before I
stumbled upon this fact in Tanenbaum’s MINIX book.

The third step may be foreign, even to those who know Intel assem-
bler — ah yes, the dreaded A20 address line. When the 8086 was
released, it had 20 address lines (A0 through A19). This allowed the
8086 to manage a 1MB address space. Any attempt to access mem-
ory beyond 1MB would wrap around to address 0. The Pentium
normally uses 32 address lines. However, the Pentium starts in real
mode at boot time and will try to mimic the 8086 by leaving the A20
address line disabled as the power-on default.

It just so happens that there is a logical AND gate called the A20
gate, which the A20 address line must pass through on its way to
the outside world. Just like a bit-wise AND operator in C, an AND
gate requires two inputs. The other input is derived from an output
pin on the 8042 keyboard controller. Most peripheral attachments to
the PC have their own dedicated microcontroller. The 8042 can be
programmed via the OUT assembly command so that it sends a 1 to
the A20 gate and enables the A20 address line.

NOTE More than anything else, the A20 line workaround was basi-
cally a kludge to allow compatibility between the 8086 and the 80286.
Using an available pin on a keyboard controller to address memory
issues is not exactly what I would call an elegant solution. It is not
exactly a fast solution either. Yikes!

Once the GDTR register has been loaded via the LDTR instruction
and the PE flag has been set in CR0, a FAR jump must be per-
formed. In Intel assembler, a FAR jump instruction is used to make

36 Chapter 1

inter-segment jumps. This causes both the code segment register
(CS) and the instruction pointer register (IP) to be loaded with new
values. The motivation behind performing a FAR jump is that it
serves as a way to load CS with a segment selector.

The tricky part of the FAR jump is that it must be coded in
binary. Before we make the jump to protected mode, we are in real
mode. That means that the assembler will be treating instructions
using the traditional 16-bit interpretations. If we tried to code the
32-bit FAR jump in assembly language, the assembler (which is
chugging along in 16-bit mode) would either signal an error or
encode the jump instructions incorrectly. Thus, we are left with
doing things the hard way.

Here is the assembly source code in all its glory:

.486P

; -- pmode.asm --

; create a single 16-bit segment containing real-mode

instructions

CSEG SEGMENT BYTE USE16 PUBLIC 'CODE'

ASSUME CS:CSEG, DS:CSEG, SS:CSEG

ORG 100H

;start here--

here:

JMP _main

;make the jump to protected mode-------------------------------

PUBLIC _makeTheJump

_makeTheJump:

; disable interrupts

CLI

; enable A20 address line via keyboard controller

; 60H = status port, 64H = control port on 8042

MOV AL,0D1H

OUT 64H,AL

MOV AL,0DFH

OUT 60H,AL

; contents which we will load into the GDTR via LGDTR need

; to jump over the data to keep it from being executed as code

JMP overRdata

gdtr_stuff:

gdt_limit DW 0C0H

gdt_base DD 0H

Memory Management Mechanisms 37

C
h
a
p
te

r
1

; copy GDT to 0000[0]:0000 (linear address is 00000000H)

; makes life easier, so don't have to modify gdt_base

; but it also destroys the real-mode interrupt table (doh!)

; REP MOVSB moves DS:[SI] to ES:[DI] until CX=0

overRdata:

MOV AX,OFFSET CS:nullDescriptor

MOV SI,AX

MOV AX,0

MOV ES,AX

MOV DI,0H

MOV CX,0C0H

REP MOVSB

; load the GDTR

LGDT FWORD PTR gdtr_stuff

; set the PE flag in CR0

smsw ax ; get machine status word

or al,1 ; enable protected mode bit

lmsw ax ; now in protected mode

; perform manual far jump

DB 66H

DB 67H

DB 0EAH ; FAR JMP opcode

DW OFFSET _loadshell

DW 8H ; 16-bit selector to GDT

;end of line, infinte loop

_loadshell:

NOP

JMP _loadshell

RET

; Global Descriptor Table (GDT)-------------------------------

PUBLIC _GDT

_GDT:

nullDescriptor:

NDlimit0_15 dw 0 ; low 16 bits of segment limit

NDbaseAddr0_15 dw 0 ; low 16 bits of base address

NDbaseAddr16_23 db 0 ; next 8 bits of base address

NDflags db 0 ; segment type and flags

NDlimit_flags db 0 ; top 4 bits of limit, more flags

NDbaseAddr24_31 db 0 ; final 8 bits of base address

codeDescriptor:

CDlimit0_15 dw 0FFFFH ; low 16 bits of segment limit

CDbaseAddr0_15 dw 0 ; low 16 bits of base address

CDbaseAddr16_23 db 0 ; next 8 bits of base address

CDflags db 9AH ; segment type and flags

CDlimit_flags db 0CFH ; top 4 bits of limit, more flags

38 Chapter 1

CDbaseAddr24_31 db 0 ; final 8 bits of base address

dataDescriptor:

DDlimit0_15 dw 0FFFFH ; low 16 bits of segment limit

DDbaseAddr0_15 dw 0 ; low 16 bits of base address

DDbaseAddr16_23 db 0 ; next 8 bits of base address

DDflags db 92H ; segment type and flags

DDlimit_flags db 0CFH ; top 4 bits of limit, more flags

DDbaseAddr24_31 db 0 ; final 8 bits of base address

;main---

PUBLIC _main

_main:

PUSH BP

MOV BP,SP

; set up temporary stack

MOV AX,CS

MOV SS,AX

MOV AX, OFFSET CSEG:_tstack

ADD AX,80H

MOV SP,AX

CALL _makeTheJump

POP BP

RET

;temp stack---

PUBLIC _tstack

_tstack DB 128 DUP(?)

CSEG ENDS

END here

You might notice that I intersperse data with code. Given that
everything has to lie in a single segment, I really don’t have a
choice. It is, however, legal to mix data in with your code, as long as
the region of memory storing the data is not treated like code and
executed. This is a trick they don’t always teach you in the books.

I built the previous program as a .COM executable using
Microsoft’s MASM. The command line to build the binary is:

C:\myfiles>ml /AT /FlpmodeList.txt pmode.asm

The /AT option causes the assembler to construct a .COM file (i.e.,
/AT means assemble with tiny memory model), which is really
nothing more than a raw binary. There are no address relocations or
fix-ups to be performed. The /Fl option causes a listing file to be

Memory Management Mechanisms 39

C
h
a
p
te

r
1

generated. Listing files are a handy way to see what binary encoding
your assembler generates.

There is a little bit of a catch. Unfortunately, once the switch to
protected mode is made, I can’t do that much because the processor
expects (and wants) 32-bit machine code. Because the assembler
that created the program is running in 16-bit mode, I am plain out of
luck.

There is a way around this dilemma: The various snippets of
operating system bootstrap code that I have read typically load the
kernel into memory before the actual switch to protected mode is
performed. This allows the FAR jump to transfer processor control
to something that the processor can digest once it has switched
modes. The kernel is exclusively 32-bit code, so the processor will
have no problem following directions.

The side effect of all this is that you’ll need two different compil-
ers to write an OS on Intel. You need a 16-bit compiler to create the
boot code and a 32-bit compiler to write the operating system
proper. This whole process is illustrated in Figure 1.22.

NOTE Borland still sells a 16-bit DOS compiler with its TurboC++
suite. Microsoft sells Visual C++ 1.52, which can also generate 16-bit
code. There are also a number of freebie compilers on the Internet
that create 16-bit executables. I like Dave Dunfield’s MICRO-C
compiler.

You can also get Microsoft’s 16-bit CL.EXE compiler and MASM
assembler for free as part of the Windows Device Driver Kit. MASM
consists of two files: ML.EXE and ML.ERR. The only downside is that
they do not come with documentation.

40 Chapter 1

Figure 1.22

Typically, when a computer is powered on, the BIOS (which is burnt
into ROM) will spring into action and look for a bootable device.
Remember that PCs start off in real mode. For the sake of simplic-
ity, let us assume that the BIOS locates a bootable diskette in drive
A. The BIOS will load the diskette’s boot sector into DRAM at
address 0000[0]:7C00 (i.e., physical address 0x07C00). This is
step number one.

Once the BIOS has loaded the boot sector, it hands over control
of the machine to whichever machine instructions now reside at
0000[0]:7C00. However, there are still a number of BIOS ser-
vices that can be accessed using interrupts. This is where the BIOS
plays a crucial role because there is a set of primitive disk I/O inter-
rupts that can be used to load the kernel.

Diskette sectors are 512 bytes in size, so there is really only
enough code to load the kernel from disk into memory (step 2) and
then switch to protected mode. At the end of the transition to pro-
tected mode, the 16-bit boot sector code will perform a manually
coded FAR jump to the kernel’s entry point (step 3). The kernel
code takes matters from there and the system is now in protected
mode and executing 32-bit instructions (step 4).

NOTE You will have to run this program under the auspices of DOS.
When I say this, I mean something like DOS 6.22. Do not try to run
this program in a virtual DOS console running on Windows 2000. You
will also have to make sure that no other memory management soft-
ware (i.e., HIMEM.SYS, EMM386.EXE) has been installed.
Unfortunately, you will need to reboot your machine, seeing as how I
overwrite the real mode interrupt vector table that lies at the bottom of
memory.

If you are interested in taking this discussion to the next level by
actually building such a boot sector, I can make a few recommenda-
tions. First, you should write the boot sector in assembly code to
save space. Next, your boot code should only make use of BIOS
interrupts to interact with the hardware. You should not try to
invoke a DOS interrupt. DOS will not be there.

Also, you should assemble and link the boot sector program as a
16-bit .COM file binary. PCs boot into real mode and thus only
understand the 16-bit instruction set. The boot sector must also be
100% code, which means that you need to avoid extra formatting in
the finished executable. This is why you will want to build a .COM
file. They are raw binaries.

To place this code on a diskette’s boot sector, you will need to
use Microsoft’s debug utility. The following set of debug com-
mands can be used to perform this task:

Memory Management Mechanisms 41

C
h
a
p
te

r
1

C:\code\boot>debug boot.com

-l

-w cs:0100 0 0 1

-q

C:\code\boot>

The –l command loads the boot.com file into memory. By
default, the boot.com file will be loaded by debug to address
CS:0x0100. The next command takes the instructions starting at
this address and writes them to drive A (i.e., drive 0) starting at log-
ical sector 0. A single, 512-byte sector is written. This may be
easier to understand by looking at the general format of the –w
command.

w startAddr driveLetter startSector nSectors

Once this has been done, the only thing left to do is to write the
kernel and place it on the diskette. You will need a 32-bit compiler
to write the kernel, and you should be aware that the compiler will
package your kernel code within some executable file format (i.e.,
the Windows Portable Executable (PE) file format), although I have
heard that gcc has a switch that will allow you to build a raw 32-bit
binary.

The best way to deal with this extra baggage is to jump over it,
which is to say that the boot sector code should take the formatting
headers into account and merely sidestep them. You might want to
disassemble your kernel file to determine where the header data
stops and where your kernel code begins.

You can use debug to write your kernel to the diskette, the
same way you as the boot sector.

Closing Thoughts

By now you should understand why memory management requires
the operating system and the processor to work closely together.
Nevertheless, the roles that the hardware and operating system
assume are, without a doubt, complementary.

The processor defines a mechanism for accessing, protecting, and
emulating memory. The hardware does, indeed, expect a special set
of data structures to be in place, like the GDT and the Page Direc-
tory. But these are merely extensions of the mechanism that the
processor provides.

It is the responsibility of the operating system to make use of the
processor’s services and mandate policy for using them. In the next

42 Chapter 1

chapter, we will see how different operating systems tackle the
issue of implementing memory management policies.

References

Blunden, Bill. “Methodology for OS Construction,” Phrack Issue 59.
www.phrack.com.

Brey, Barry. Intel Microprocessors 8086/8088, 80186/80188, 80286,

80386, 80486 Pentium, and Pentium Pro Processor, Pentium II,

Pentium III, and Pentium IV: Architecture, Programming, and

Interfacing. 2002, Prentice Hall, 6th Edition, ISBN: 0130607142.
This is a fairly recent book and should take care of any ques-

tions you may have. Barry has been writing about Intel chips
since the first one came out.

Intel Corporation. Intel Architecture Software Developer’s Manual,

Volume 3: System Programming Guide. 1997, order number
243192.

MIPS Technologies. MIPS64 Architecture For Programmers, Volume

III: The MIPS64 Privileged Resource Architecture. 2001, document
number: MD00091.

Podanoffsky, Michael. Dissecting DOS. 1995, Addison-Wesley, ISBN:
020162687X.

This book has a useful summary of the boot process on Intel
hardware. It also details the design and operation of RxDOS, an
enhanced clone of MS-DOS. In the spirit of the original DOS
implementation, Podanoffsky has written the entire OS in assem-
bly code. I’m not sure whether to admire his programming
fortitude or be disheartened by the lack of portability.

Wahbe, Lucco, Anderson, Graham. Efficient Software-Based Fault

Isolation. 1993, Proceedings of the Symposium on Operating
System Principles.

Memory Management Mechanisms 43

C
h
a
p
te

r
1

Chapter 2

Memory Management
Policies

“If I could remember the names of all these particles, I’d be a
botanist.”

— Enrico Fermi

In the previous chapter, I discussed the basic mechanisms that pro-
cessors provide to allow memory regions to be read, modified,
isolated, and simulated. Now you are ready to examine the ways in
which operating systems construct policies that make use of these
mechanisms. The processor presents the means to do things with
memory through a series of dedicated data structures, system
instructions, and special registers. It offers a set of primitives that
can be combined to form a number of different protocols. It is
entirely up to the operating system to decide how to use the proces-
sor’s fundamental constructs, or even to use them at all.

There are dozens of operating systems in production. Each one
has its own design goals and its own way of deciding how to use
memory resources. In this chapter I will take an in-depth look at the
memory subsystems of several kernels, ranging from the simple to
the sophisticated. I will scrutinize source code when I can and hope-
fully give you a better feel for what is going on inside the
LeMarchand cube.

In this chapter, I am going to gradually ramp up the level of com-
plexity. I will start with DOS, which is possibly the most
straightforward and simple operating system that runs on a PC.
DOS is really nothing more than a thin layer of code between you
and the hardware. Next, I will kick the difficulty up a notch with
MMURTL. MMURTL, unlike DOS, is a 32-bit operating system
that runs in protected mode. Finally, this chapter will culminate with
a discussion of two production-quality systems: Linux and Windows.

45

After having looked at all four operating systems, I think that
Windows is the most complicated system. Anyone who disagrees
with me should compare implementing a loadable kernel module for
Linux with writing a kernel mode PnP driver for Windows. There
are people who make a living off of telling people how to write Win-
dows kernel mode drivers. Don’t get me wrong, the documentation
for writing kernel mode drivers is accessible and copious; it is just
that the process is so involved. After literally wading through Win-
dows, I gained an appreciation for the relatively straightforward
nature of the Linux kernel.

Case Study: MS-DOS

DOS Segmentation and Paging

Microsoft’s disk operating system (DOS) is a study in minimalism.
The operating system’s conspicuous lack of advanced features, how-
ever, was not completely intentional. Rather, the nature of DOS was
a result of the context in which it was constructed. Back in 1980,
when Bill Gates offered to provide an operating system for IBM’s
first PC, the hardware (i.e., the 8088) didn’t support anything other
than strict real mode addressing. To compound matters, Microsoft
was under such strict time-to-market constraints that they out-
sourced everything by purchasing a CP/M clone written for the
8088 by a man named Tim Paterson.

Suffice it to say, talking about memory segmentation and paging
on DOS is of limited use, primarily because neither of these fea-
tures exist. DOS operates strictly in real mode, where it is very
easy for a program in execution to pillage memory.

NOTE It is interesting to see how being at the right place at the right
time can change history. IBM had originally intended to use the CP/M
operating system sold by Digital Research. For whatever reason, the
deal fell through and Microsoft was there to catch the ball. Had Bill
Gates decided to complete his degree at Harvard, or had Digital
Research not bungled its deal with IBM, we would all probably be
using Apple computers.

46 Chapter 2

DOS Memory Map

The DOS operating system consists of three files:

� IO.SYS

� MSDOS.SYS

� COMMAND.COM

IO.SYS interfaces directly to the computer’s hardware. It is writ-
ten, or at least modified, by the Original Equipment Manufacturer
(OEM). All requests for hardware services from user programs
must travel through MSDOS.SYS, a device-neutral I/O manager,
which translates the request into a format that can then be passed
to IO.SYS. MSDOS.SYS can be thought of as the kernel of DOS
(although your definition of “kernel” would have to be pretty loose).
COMMAND.COM is a command interpreter.
IO.SYS and MSDOS.SYS are both core system files. Without

these files, there is no DOS. The command interpreter, on the other
hand, can be replaced. There were several companies in the 1980s
that offered their own, enhanced version of COMMAND.COM. How
many readers remember Norton Commander?

Before DOS is loaded, the real mode address space of a bare com-
puter resembles that displayed in Figure 2.1. A bare-bones DOS
bootstrap will load all of its components into the region between the
BIOS data and video RAM.

Memory Management Policies 47

C
h
a
p
te

r
2

Figure 2.1

Low memory is populated by BIOS code and the interrupt vector
table (IVT). The first 640KB of memory is known as conventional

memory. This is where DOS will load itself and run its user pro-
grams. There are also several small regions of memory not used by
the video hardware or the BIOS. These are called Upper Memory

Blocks (UMBs). The region of memory above the 1MB limit is
known as extended memory. In the next section, I will discuss
extended memory in more depth. For now, you can assume that
DOS is confined to a 1MB space.

NOTE Expanded memory is extra storage space that was created by
swapping memory below the 1MB mark to special memory chips.
Expanded memory is strictly an historical artifact and its use was
replaced by extended memory.

When a DOS machine boots, the BIOS locates a bootable disk and
loads its boot sector to 0000[0]:7C00. The boot sector then
inspects its disk for IO.SYS. How do I know this? One quick way to
verify this without performing a gruesome disassembly is to dump
the boot sector and look for character data that is hard coded.

This is how the debug utility could be used to perform this type
of investigation:

The first thing I do is load the boot sector into memory at
CS:0100. Then I just start perusing the memory image until I hit
pay dirt. As you can see, the string “IO.SYS” is there. This doesn’t
necessarily prove that DOS looks for IO.SYS and loads it (to prove
this, you would have to disassemble), but it provides evidence.

Once IO.SYS has been loaded, it locates MSDOS.SYS and loads
it into memory. The operating system, whose core files now exist in
memory, then loads COMMAND.COM. After this, the CONFIG.SYS
configuration file will be processed to load device drivers and set
system parameters. Finally, COMMAND.COM will automatically pro-
cess a batch file of commands named AUTOEXEC.BAT. The
AUTOEXEC.BAT file is used to set up the operating system’s

48 Chapter 2

C:\WINDOWS>debug

-l cs:0100 0 0 1

-d cs:0280

158E:0280 C3 B4 02 8B 16 4D 7C B1-06 D2 E6 0A 36 4F 7C 8BM|.....6O|.

158E:0290 CA 86 E9 8A 16 24 7C 8A-36 25 7C CD 13 C3 0D 0A$|.6%|.....

158E:02A0 4E 6F 6E 2D 53 79 73 74-65 6D 20 64 69 73 6B 20 Non-System disk

158E:02B0 6F 72 20 64 69 73 6B 20-65 72 72 6F 72 0D 0A 52 or disk error..R

158E:02C0 65 70 6C 61 63 65 20 61-6E 64 20 70 72 65 73 73 eplace and press

158E:02D0 20 61 6E 79 20 6B 65 79-20 77 68 65 6E 20 72 65 any key when re

158E:02E0 61 64 79 0D 0A 00 49 4F-20 20 20 20 20 20 53 59 ady...IO SY

158E:02F0 53 4D 53 44 4F 53 20 20-20 53 59 53 00 00 55 AA SMSDOS SYS..U.

-q

environment (i.e., PATH and TEMP variables) and load Terminate
and Stay Resident (TSR) programs.

NOTE TSR programs are loaded into memory and remain there
even after they terminate so that they can be reactivated quickly. The
doskey program, which supports command line history services, is a
good example of a TSR as is the DOS mouse driver. Because TSRs are
usually small, they are typically stuck into a UMB if possible.

Memory Usage

The mem command can be used to obtain a snapshot of the operat-
ing system’s memory usage:

Memory Type Total = Used + Free
---------------- ------- ------- -------
Conventional 638K 97K 541K
Upper 0K 0K 0K
Reserved 0K 0K 0K
Extended (XMS) 65,532K 65,532K 0K
---------------- ------- ------- -------
Total memory 66,170K 65,629K 541K

Total under 1 MB 638K 97K 541K

Largest executable program size 541K (553,664 bytes)
Largest free upper memory block 0K (0 bytes)

The mem /D command can also be utilized to get a precise look at
where, in conventional memory, DOS has placed its core
components:

Conventional Memory Detail:

Segment Total Name Type
------- ---------------- ----------- --------
00000 1,039 (1K) Interrupt Vector
00040 271 (0K) ROM Communication Area
00050 527 (1K) DOS Communication Area
00070 2,560 (3K) IO System Data

CON System Device Driver
AUX System Device Driver
PRN System Device Driver
CLOCK$ System Device Driver
A: - B: System Device Driver
COM1 System Device Driver
LPT1 System Device Driver
LPT2 System Device Driver
LPT3 System Device Driver
COM2 System Device Driver
COM3 System Device Driver
COM4 System Device Driver

00110 42,784 (42K) MSDOS System Data

Memory Management Policies 49

C
h
a
p
te

r
2

00B82 10,832 (11K) IO System Data
192 (0K) FILES=8
256 (0K) FCBS=4

7,984 (8K) BUFFERS=15
448 (0K) LASTDRIVE=E

1,856 (2K) STACKS=9,128
00E27 4,720 (5K) COMMAND Program
00F4E 80 (0K) MSDOS -- Free --
00F53 272 (0K) COMMAND Environment
00F64 112 (0K) MEM Environment
00F6B 88,992 (87K) MEM Program
02525 501,168 (489K) MSDOS -- Free --

As you can see, most of the system binaries are loaded into low
memory, where they share space with vital system data structures.
The segment addresses provided in the previous listing will need to
be multiplied by 16 (i.e., append the implied zero) in order to specify
an actual segment.

Example: A Simple Video Driver

Because DOS offers no memory protection, it is possible to sidestep
DOS and the BIOS and write your own video driver.

It so happens that text characters can be sent to the screen by
modifying VRAM. For example, VGA color text mode video RAM
starts at 0xB8000. A VGA text screen consists of 80 columns and
25 rows. Each character requires a word of memory, so 4,000 bytes
of VRAM are consumed. The low byte of each word stores an ASCII
character, and the high byte of each character is an attribute byte. I
am going to keep things simple and use a monochrome scheme so
the attribute byte is 0xF.

The following program takes advantage of this fact by clearing
the screen and displaying a small message.

/* --crtio.c-- */

int offset;

/*
Have 80x25 screen
Each screen character in VRAM is described by two bytes:

[ASCII char][attribute]
lo byte hi byte

80x25 = 2000 screen characters = 4000 bytes of VRAM
*/
void putCRT(ch)
char ch;
{

50 Chapter 2

/*
ch = BP + savedBP + retaddress

= BP + 4 bytes
display attribute = BP+5
(0FH = white foreground, black background)
*/
asm "MOV SI,BP";
asm "ADD SI,4H";
asm "MOV BYTE PTR +5[BP],BYTE PTR 0FH";

/* set destination ES:DI pair */
asm "MOV DX,0B800H";
asm "MOV ES,DX";
asm "MOV DI,_offset";

/* place [char][attr] word in memory */
asm "MOV CX,2H";
asm "REP MOVSB";
return;

}/*end putCRT---*/

/*
puts string at text position 'pos'
note: 2 bytes for each screen character,

so mult. offset by 2
*/

void putCRTStr(str,pos)
char *str;
int pos;
{

int i;
i=0;
offset=pos*2;
while(str[i]!=0)
{

putCRT(str[i]);
offset = offset+2;
i++;

}
return;

}/*end putCRTStr--*/

/* clears the screen and places cursor to [0,0]*/

void clearCRT()
{

int i;
offset=0;
for(i=0;i<=(80*25);i++){ putCRT(' '); offset=offset+2; }
offset=0;
return;

}/*end clearCRT---*/

Memory Management Policies 51

C
h
a
p
te

r
2

/*
test driver
*/

void main()
{

clearCRT();
putCRTStr("DOS is dead, Use Linux!",240);
return;

}/*end main---*/

You might notice that I am using rather old K&R syntax and unusual
inline statements. This is due to the fact that the compiler I am
using is Dave Dunfield’s handy MICRO-C PC86 C compiler. It’s one
of the only freebies on the Internet that I could find that would gen-
erate MASM friendly 16-bit assembler. In case you are interested,
here is my build script:

del crtio.obj

del crtio.exe

del crtio.asm

mcp crtio.c | mcc > crtio.asm

ML /Zm -c crtio.asm

LINK crtio.obj PC86RL_S.OBJ

NOTE You can also get Microsoft’s 16-bit CL.EXE compiler and
MASM assembler for free as part of the Windows Device Driver Kit.
MASM consists of two files: ML.EXE and ML.ERR. The only downside is
that they do not come with documentation.

Example: Usurping DOS

Another unfortunate result of the lack of memory protection in DOS
is that vital system data structures can be modified by ordinary pro-
grams. The interrupt vector table (IVT) is particularly susceptible
to being hacked.

Each IVT entry is 4 bytes in size and consists of a 16-bit offset
address in the lower word, followed by a 16-bit segment address.
This segment and offset address specify the address of the Inter-
rupt Service Routine (ISR). If you want to take control of an
interrupt, you can easily overwrite an IVT entry with your own
segment and offset address.

An ISR is just a function that implements an interrupt. DOS ISRs
are all accessed through interrupt 0x21 in conjunction with a func-
tion specifier in the 8-bit AH register. The DOS API, in fact, is
nothing more than a series of interrupts and their specifications.

52 Chapter 2

The DOS operating system itself is merely the implementation of
this API.

There is no need to write your own routine to hijack interrupts.
DOS makes life easy for you by providing services for replacing IVT
entries (i.e., functions AH=0x25 and AH=0x35 of DOS interrupt
0x21). In the following program, I seize control of the keyboard and
only surrender control after the user types eight keys in a row.

/* --usurp.c-- */

int oldseg;
int oldoff;
char kbd_buffer;
int delay;

void saveOldISR()
{

asm "MOV AH,35H";
asm "MOV AL,09H";
asm "INT 21H";
asm "MOV _oldseg,ES";
asm "MOV _oldoff,BX";
return;

}/*end saveOldISR---*/

void setUpISR()
{

asm "PUSH DS";
asm "MOV CX,CS";
asm "MOV DS,CX";
asm "MOV DX,OFFSET newISR";
asm "MOV AH,25H";
asm "MOV AL,09H";
asm "INT 21H";
asm "POP DS";

return;
}/*end setUpISR---*/

void restoreOldISR()
{

asm "STI";
asm "PUSH DS";
asm "MOV CX,_oldseg";
asm "MOV DS,CX";
asm "MOV DX,_oldoff";
asm "MOV AH,25H";
asm "MOV AL,09H";
asm "INT 21H";
asm "POP DS";

asm "MOV AX,4C00H";
asm "INT 21H";

Memory Management Policies 53

C
h
a
p
te

r
2

return;
}/*end restoreOldISR--*/

void readKBD()
{

while(kbd_buffer==-1){}
kbd_buffer=-1;
return;

}/*end readKBD--*/

void ISR()
{

asm "newISR:";
asm "STI";
asm "PUSH AX";
asm "PUSH BX";
asm "IN AL,60H ;get [scan code][status] from port 60H";
asm "MOV BL,AL";

asm "IN AL,61H ;tell KBD have received (twiddle bit)";
asm "MOV AH,AL";
asm "OR AL,80H";
asm "OUT 61H,AL";
asm "XCHG AL,AH";
asm "OUT 61H,AL";

asm "mov AL,BL";
asm "and BL,7FH ; get [scan code]";
asm "test AL,80H ; check for key release";
asm "jnz exitInterrupt";

asm "mov _kbd_buffer,BL";

asm "exitInterrupt:";
asm "mov AL,20H";

asm "out 20H,AL";
asm "pop BX";
asm "pop AX";
asm "iret";
return;

}/*end ISR--*/

void printBiosCh(ch)
char ch;
{

/*
ch = BP + savedBP + retaddress

= BP + 4 bytes
*/
asm "MOV AH,0EH";
asm "MOV AL,+4[BP]";
asm "INT 10H";
return;

54 Chapter 2

}/*end printBiosCh--*/

void printBiosStr(cptr,n)
char* cptr;
int n;
{

int i;
for(i=0;i<n;i++){ printBiosCh(cptr[i]); }
return;

}/*end printBiosStr---*/

/* wrestle control from DOS and go on a joy ride */

void main()
{

kbd_buffer = -1;
delay=0;

printBiosStr("save-",5);
saveOldISR();

printBiosStr("setUp-",6);
setUpISR();

readKBD();
while(delay<=7)
{

printBiosCh('1'+delay);
delay++;
readKBD();

}

printBiosStr("-restore",8);
restoreOldISR();

return;
}/*end main---*/

As with the previous example, I am using MICRO-C and MASM to
build the executable. The steps necessary to build this program are:

del usurp.obj

del usurp.exe

del usurp.asm

mcp usurp.c | mcc > usurp.asm

ML /Zm -c usurp.asm

LINK usurp.obj PC86RL_S.OBJ

Also, I use a trick in this example that might not be completely
obvious. In C, labels are limited to the scope of the function that
they are defined in. This prevents a nefarious programmer like me
from making arbitrary random jumps from function to function.

Memory Management Policies 55

C
h
a
p
te

r
2

Naturally, there are exceptions to the rule. For example,
longjmp() and setjmp() are ANSI C functions that allow
nonlocal transfers of control. In addition, anyone who has abused
exception handling knows that throwing an exception can be sub-
verted to do an abrupt hop between procedures. The technique that
I use is just not as conventional, or as obvious, as the previous two.
I take advantage of the fact that assembly language labels tend to be
global in scope.

So instead of being limited to a function with ANSI C labels:

mylabel:

Printf("local function jump\n");

Goto mylabel;

I surreptitiously hide the label definition inside of an inline assem-
bly code snippet:

asm "my_global_label:";

This effectively camouflages the label from the compiler’s syntax
checker. The only caveat is that you can only reference the label in
other inline assembly statements.

In the example above, I needed to specify an address without
being constrained by C’s structured programming paradigm. I
needed this address to create a new entry in the IVT. Using the
inline assembler tactic that I just explained, it worked fine.

Jumping the 640KB Hurdle

In the beginning, DOS programs lived in a 1MB jail cell. Escaping
the conventional memory barrier was a lot like the sound barrier; it
was just a matter of time before it was broken. In the later half of
the 1980s, a number of products emerged that allowed extended
memory to be accessed. These products may be referred to, in gen-
eral, as DOS extenders. DOS extenders allowed the 640KB jail cell
to grow into a 4GB prison.

“I am not a number; I am a free man.”
— Prisoner number 6, The Prisoner

NOTE A processor in real mode has a physical address space of
1MB. However, when all the storage dedicated to the BIOS, VRAM, and
the IVT is taken into account, all that DOS is left with is less than
640KB of free space.

A DOS extender is a collection of library calls and software compo-
nents that allow programs to manipulate extended memory but still
access the DOS file system, system calls, and BIOS. Because

56 Chapter 2

support must be compiled into a program, DOS extenders tended to
be shipped with compilers as a sort of add-on third-party tool. For
example, Visual C++ version 1.0 Professional was sold with Phar
Lap’s 286|DOS Extender. Watcom’s C compiler also came with
Rational System’s DOS/4G extender. DOS/4G is also still being sold
by Tenberry Software. It may also be of interest to the reader that
Phar Lap still sells a DOS extender. DOS may never die.

NOTE If you are interested in looking at a free DOS extender, take a
look at DJGPP’s cwsdpmi.exe DPMI host.

Because DOS is not designed to access extended memory, there
was no established protocol for managing extended memory.
Vendors selling DOS extenders were free to design their own
unique bridge over the 1MB moat. Eventually, groups of companies
got together and developed a number of standard ways to manage
extended memory. A few of the more notable standards are:

� DOS Protected Mode Interface (DPMI)

� Virtual Control Program Interface (VCPI)

� eXtensible Memory Specification (XMS)

Each standard has a specification. The DPMI spec is available at
Tenberry’s site (see the reference section at the end of the chapter).
The XMS standard was implemented by Microsoft, Lotus, and AST
Research. The VCPI standard was an attempt to allow other DOS
extenders to cohabitate with Expanded Memory Specification
(EMS) services.

The role of a DOS extender in the execution of a user application
is displayed in Figure 2.2.

Memory Management Policies 57

C
h
a
p
te

r
2

Figure 2.2

The application itself runs in protected mode. The extender
exposes an API to the application, which may look and smell like a
normal 16-bit API. Beneath the API is a set of libraries that will
manage the application’s switch to protected mode and transmit its
requests for real mode services. The client transmits these
requests to a component that will do the necessary dirty work in
real mode. According to the standard you are looking at, these
worker components are called “drivers,” “servers,” or “hosts.”

The relationships between these different pieces remind me of a
restaurant. The customer (i.e., the application) requests a specific
entrée from the waiter (i.e., the extender client). The waiter writes
up the order and gives it to a cook (i.e., an XMS driver) in the back
room. When the cook has completed the entrée, he gives it to the
waiter, who then passes it back to the customer. The kitchen, where
the food is cooked, is real mode. The dining area, with its fancy
linen, is protected mode.

Most commercial DOS extenders will have client layers that are
capable of interacting with a number of different extended memory
environments. In fact, the first thing the client code usually does is
check to see which environments exist. For example, the following
code can be used by DOS extender clients to see if an XMS driver
exists:

; Is an XMS driver installed?

mov ax,4300h

int 2Fh

cmp al,80h

jne NoXMSDriver

NOTE Vendors who sell DOS extenders often required the developer
to embed all the memory management components in the application
itself. The motivation behind this was to guarantee that the application
could run on any DOS machine without having to impose a set of pre-
requisites. This tended to make applications using DOS extenders
relatively large. Some DOS extenders were almost entire operating
systems by themselves, especially when you compare them to DOS. It
is rumored that DOS extender technology, at Microsoft, was first imple-
mented in 1988 for a monster DOS application called Windows.

DOS 6.22 was released with two memory management drivers:
HIMEM.SYS and EMM386.EXE.
HIMEM.SYS is an XMS driver. It is mentioned in the XMS speci-

fication. EMM386.EXE simulates expanded memory with extended
memory for old dinosaur applications that need expanded memory.
EMM386.EXE provides services conforming to both the XMS and
VCPI specifications.

58 Chapter 2

HIMEM.SYS and EMM386.EXE are loaded into memory as
device drivers when the operating system boots. The following
entries in CONFIG.SYS perform this task:

DEVICE=A:\DRIVER\HIMEM.SYS /VERBOSE

DEVICE=A:\DRIVER\EMM386.EXE VERBOSE

Like DOS itself, DOS extenders have faded into obscurity. However,
they serve as interesting, if not curious, artifacts that demonstrate
just how far system software engineers are willing to go to solve a
memory problem. They also show how problems related to back-
ward compatibility can be extremely unpleasant.

Case Study: MMURTL

“There are two types of people in this world, good and bad. The
good sleep better, but the bad seem to enjoy the waking hours
much more.”

— Woody Allen

Richard Burgess is a one-man army. He is the sole creator of the
MMURTL operating system. Not only did he build his own pro-
tected mode multitasking operating system, but he also wrote a
32-bit compiler, assembler, and debugger to go with it. I guess this
is what happens when you retire. Like Ken Thompson, Burgess was
bitten by the operating system bug. It is just one of those things.
Even if you try to resist, you find yourself compelled to design and
implement an operating system. You pace, you rant, and you lose
sleep over all sorts of tiny hardware idiosyncrasies.

I can only guess that Burgess spent a lot of his time munching on
chocolate-covered coffee beans and washing them down with Jolt. I
bought a copy of Richard’s book on MMURTL back in 1995, and I
am glad to see that it has been brought back from the dead. After a
stint of being out-of-print, Sensory Publishing came out with a new
release in 2000.

Like DOS, MMURTL is an operating system that runs on Intel
hardware. Compared to DOS, MMURTL is a huge step forward.
Nevertheless, on the complexity spectrum, MMURTL lies some-
where between DOS and Linux. This explains why I have decided to
present MMURTL before Linux. You will get a better understanding
of exactly how MMURTL is “simple” in the next few sections.

Memory Management Policies 59

C
h
a
p
te

r
2

Background and Design Goals

Burgess was careful to invest effort in deciding on a set of design
goals. It is actually possible to understand what some of these goals
are just by dissecting the operating system’s name (Message-based,
MUltitasking Real-Time kerneL). To get a better idea of what Rich-
ard wanted to build, here is a complete list:

� Single-user environment

� Message-passing kernel

� Priority-based, pre-emptive, multitasking

� Real-time operation

� 32-bit protected mode memory management

MMURTL is not meant to be a multiuser machine, like a UNIX box
or mainframe. Instead, it is meant to interact with other users via
the client-server model. This is in the same vein as Microsoft’s Dis-
tributed Network Architecture (DNA), where the computing
workload is spread out among users.

NOTE When Windows NT 4.0 was released in 1996, Microsoft really
marketed DNA. DNA, however, was built around the limitations of the
NT system more than anything else. It was not an independent move-
ment with its own agenda. In other words, rather than point out the
fact that NT was hobbled by its lack of multiuser support, the DNA
campaign seemed to say, “yes, of course NT is not a multiuser system
— we meant to do that.”

The Intel Pentium of 1996 was not capable of handling the kind of
massive transaction load that high-end RISC hardware did. Again, the
marketing people piped up, “oh, of course Windows machines can’t
handle 10 million transactions a day … that’s because Windows
machines are meant to be clustered.”

I imagine that when some poor sysadmin pointed out NT’s propen-
sity to bluescreen back in 1996, years before the advent of service
pack 5, a Microsoft marketing guy jumped onto a table and said, “hey,
that’s not a bluescreen. That’s a nifty screen saver you can watch while
the memory image dumps.”

The primary IPC and synchronization mechanism in MMURTL is
message passing. MMURTL’s message-passing code is buried deep
in the bowels of the kernel so that it is an integral part of the ker-
nel’s normal operation. For example, the task-switch mechanism in
MMURTL is firmly rooted in the message-passing API.

Instituting real-time response features also shaped MMURTL to
a greater extent. With real-time systems, certain outside events
must be acknowledged and processed in a specific amount of time.
A good example of this would be patient monitoring equipment in a
hospital. The primary impact that this had on MMURTL was to

60 Chapter 2

allow outside events (i.e., the user) to force a task switch. Some
multiuser operating systems implement their own strict policies
and individual users have little or no control. With MMURTL,
however, the user has much more control over what gets the pro-
cessor’s attention. Given that MMURTL is a single-user operating
system, this makes sense.

Unlike DOS, MMURTL was originally designed to use Intel’s
protected mode memory management. Surprisingly, MMURTL uses
only minimal segmentation and does not bother to implement mem-
ory protection on the segment level. Instead, MMURTL makes use
of paging to provide both memory allocation features and protection.
These architectural idiosyncrasies are what make this operating
system a good place to start.

MMURTL and Segmentation

MMURTL has only three memory segments. That is it. They are
described in the operating system’s GDT. MMURTL constructs a
segment for the operating system, a segment for application code,
and a segment for application data. The best way to see this is to
look at MMURTL’s GDT definitions:

NullDesc DQ 0000000000000000h ;The first desc is always null

OSCodeDesc DW 0FFFFh ; Limit 15-0 (4Gb)
DW 0000h ; Base 15-0
DB 00h ; Base 23-16 ;10000h
DB 10011010b ; P(1) DPL(00) 1 1 C(0) R(1) A(0)
DB 11001111b ; G(1) D(1) 0 0 Limit[19-16]
DB 00h ; Base 31-24

DataDesc DW 0FFFFh ; Limit (bits 0:15) at linear 00K
DW 0000h ; base (bits 15:0)
DB 00h ; base (bits 23:16)
DB 10010010b ; P(1) DPL(00) 1 0 E(0) W(1) A(0)
DB 11001111b ; G(1), B(1) 0 0 limit[19-16)
DB 00h ; Base at 0 (bits 31:24)

CodeDesc DW 0FFFFh ; Limit 15-0 (0FFFFh)
DW 0000h ; Base 15-0
DB 00h ; Base 23-16
DB 10011010b ; P(1)-DPL(00)-1-1-C(0)-R(1)-A(0)
DB 11001111b ; G(1) D(1) 0 0 Limit[19-16]
DB 00h ; Base 31-24

It might be easier to see what this means if we decode the fields in
each descriptor and construct a matrix. This is what I have done in
Table 2.1. I have always had a hard time reading descriptor tables
myself:

Memory Management Policies 61

C
h
a
p
te

r
2

Table 2.1

OsCodeDesc DataDesc CodeDesc

Base address 0x00000000 0x00000000 0x00000000

Size limit 0xFFFFF 0xFFFFF 0xFFFFF

Limit units 4KB increments 4KB increments 4KB increments

32-bit code/data Yes Yes Yes

Present in memory Yes Yes Yes

Privilege 0x0 0x0 0x0

Type Execute/Read Read/Write Execute/Read

Obviously, Intel is using what I would call a Flat Segment Model.
There is really only a single segment (according to the descriptors)
that spans the address space of the processor.

NOTE MMURTL never uses an LDT, only a single GDT and a single
IDT (for interrupt handling). During the boot phase, the MMURTL
16-bit boot sector code loads the 32-bit kernel code from the disk to
memory at 0x6000. The kernel is loaded at 0x6000 to avoid wiping
out the BIOS data area, which is still needed. The boot code then
points the GDTR and IDTR registers to the GDT and IDT. The GDT and
IDT were loaded into memory as a part of the kernel image. The boot
sector code then switches the processor to protected mode and jumps
to the kernel entry point. Once this has transpired, the kernel will
reload itself to address 0x0. The BIOS code and data, which are over-
written in the process, are no longer needed.

Because there are only three segment descriptors to index, there
are only three segment selectors possible (0x8, 0x10, and 0x18).
Each one indexes a specific descriptor. These three selectors are
presented and decomposed in Figure 2.3:

From looking at the descriptors and the selectors, it is easy to see
that the entire memory address space has been set to privilege level
zero. In addition, the segment limits have all been set to the maxi-
mum value (0xFFFFF in 4KB increments). This means that no
memory protection scheme is used at the segment level. MMURTL
uses the simplest protected mode segment model possible and
avoids using any other segment-related features.

62 Chapter 2

Figure 2.3

Paging Variations

I have been using the terms “paging” and “virtual memory” synon-
ymously. The historical motivation for paging was to make use of
disk storage to simulate core memory. This traditional use is why I
have emphasized the employment of paging as a way to artificially
expand a computer’s address space. Those tiny little magnets were
expensive, and 8KB of core memory could only take you so far.

There are, however, other ways to use paging. If you recall from
Chapter 1, the Pentium’s paging facilities take a linear address and
map it to a byte in physical memory. This address resolution mecha-
nism allows physical memory to be mapped to an artificial/linear
address space. A program running in a linear memory space uses
pointers holding linear addresses, which to the program appear to
correspond to actual physical memory locations. However, the
actual physical location of the program and its data have addresses
that are usually much different from the linear values. The nature of
the Pentium’s paging hardware allows for two distinct uses for vir-
tual memory:

� Virtual-paged memory

� Demand-paged virtual memory

In the case of virtual-paged memory, physical memory is broken up
into a series of pages. A linear address space is implemented, and
the hardware takes care of translating the linear addresses to the
physical addresses. The linear address space can be much larger
than the physical address space, but you will only be able to manage

an amount of memory equal in size to the physical address space. Vir-
tual-paged memory is “virtual” because the addresses being used
(i.e., the linear addresses) do not correspond to physical addresses.

NOTE Virtual-paged memory is virtual memory without disk I/O.
Page faults are used in virtual-paged memory to indicate memory
access violations. Disk storage is not used to expand a processor’s
address space.

Demand-paged virtual memory is where we bring disk storage into
the fray. In this case, not only are the addresses fake (i.e., linear),
but they might also resolve to physical bytes that are stored on a
disk instead of in physical memory. This method is called demand
paging because an operating system that uses demand paging will
load pages from disk storage “on demand” when they are needed. In
addition to reporting access violations, this form of paging also
makes use of page faults in order to determine when pages should
be loaded from disk storage.

Memory Management Policies 63

C
h
a
p
te

r
2

MMURTL and Paging

One important characteristic of MMURTL’s paging subsystem is
that it does not provide disk-based virtual memory. Specifically,
MMURTL does not use a disk drive to artificially expand its address
space. Instead, MMURTL merely uses the Intel processor’s paging
hardware to provide memory protection and memory allocation. In
other words, MMURTL implements a virtual-paged memory model.
Burgess speculates in his book that support for demand-paged vir-
tual memory might be added in the future.

MMURTL uses paging facilities to map each application to the
same linear address region, while having them reside in different
physical memory regions. This creates the illusion that all the appli-
cations exist in the same region of physical memory. However, it is
an illusion. The user applications only share the same linear address
region. Their page directories and page tables are distinctly differ-
ent. This bookkeeping technique allows processes to appear to be in
the same place simultaneously, when they are really not.

MMURTL uses a 2GB linear address space. Be careful! I am not
talking about physical memory; you don’t have to go out and buy
2GB of SDRAM to run MMURTL. The OS owns the bottom 1GB of
the fake/linear address space and each application thinks that it
owns everything above 1GB. In addition, each user application also
thinks that it is the only program running above 1GB.

Figure 2.4 displays the memory map, as seen by a MMURTL
user application.

64 Chapter 2

Figure 2.4

In reality, what is actually happening is illustrated in Figure 2.5.

QUESTION
How can this be done? How can applications share the same

linear address memory but still reside in separate regions of
physical memory?

ANSWER
The key is in the page tables and page directories. It is possi-

ble for a linear address to correspond to two different physical
addresses because it is nothing but a series of offsets. The base
addresses of items can differ, and this is what results in different
locations in DRAM. This is illustrated in Figure 2.6.

Memory Management Policies 65

C
h
a
p
te

r
2

Figure 2.5

Figure 2.6

For example, two applications could exist: A and B. In MMURTL,
each application has its own page directory. This means that
applications A and B will have different sets of paging data struc-
tures. Application A will have base addresses set (base1A,
base2A, and base3A) and application B will have base addresses
set (base1B, base2B, and base3B). The byte that these two sets
reference will be completely different, but the linear address is
the same because the linear address is nothing but a set of
offsets.

Now let’s look at how MMURTL implements memory protection. If
you recall the page directory and page table entries that were
described in the previous chapter, you should remember that the
Intel processor supports two different privilege levels: supervisor
and user. Page table entries have a field, consisting of a single bit, to
specify the privilege level of the memory page that the entry refer-
ences. If the field is clear, the page of memory possesses supervisor
rights. If the field is set, the page possesses only user privileges.

In MMURTL, the kernel and all the device drivers exist at the
supervisor level, and the user applications exist at the user level. If
a user application attempts to access the kernel, a page fault is
thrown and MMURTL responds via the IDT. This two-ring privilege
scheme based on paging is a compromise between the single-ring
scheme of DOS (where there is no distinction between the operat-
ing system and user applications) and the elaborate four-ring
privilege hierarchy supported by the Pentium’s segmentation
hardware.

Memory Allocation

MMURTL provides memory to user applications in 4KB pages. If
your application only needs 24 bytes, it will be up to the user space
libraries (i.e., malloc()) to take a 4KB page and break it into
smaller pieces. MMURTL exposes the following memory allocation
system calls to user applications:

� extern far U32 AllocPage(U32 nPages, U8

**ppMemRet);

� extern far U32 DeAllocPage(U8 *pOrigMem, U32

nPages);

� extern far U32 QueryPages(U32 *pdPagesLeft);

Let’s look at each function individually:

� AllocPage
nPages — The number of 4KB pages to allocate

66 Chapter 2

ppMemRet — A pointer to a pointer that stores the address
of the memory allocated

� DeAllocPage
pOrigMem — A pointer to address of the page to free
nPages — The number of 4KB pages to free (assume pages
are contiguous)

� QueryPages
pdPagesLeft — A pointer to a variable that will hold the
number of free pages left

The AllocPage() function allocates memory in contiguous
pages. In addition, the memory address returned is the address of
the lowest byte in memory (i.e., the first byte of the first page).

All of these functions return a number of possible error codes.
There are dozens of error codes defined in MMURTL’s header files.
It is important to realize that an error code of zero means that there
are no problems.

#define ErcOK 0 /* Alls Well */

NOTE As far as protected mode operating systems are concerned,
MMURTL is about as spartan as you can get. There is no demand pag-
ing, and the page-based allocation scheme is uncomplicated. In the
next two case studies, you will see how much more involved memory
management can become.

Case Study: Linux

“The memory management on the PowerPC can be used to
frighten small children.”

— Linus Torvalds

Now we arrive at the production operating systems. Linux has a
sophisticated and fairly mature kernel, one that IBM is willing to
sell on its mainframes. This additional, but necessary, complexity
will make our discussion a little more interesting.

History and MINIX

In the beginning, there was a professor in Amsterdam named
Andrew S. Tanenbaum. He wanted his students to be able to get
their hands dirty with operating system internals without having to
spend months dissecting a large production system. In 1987
Tanenbaum wrote MINIX, a small UNIX clone that originally ran on

Memory Management Policies 67

C
h
a
p
te

r
2

the 8086/88. He wrote it from scratch and did an impressive job of
making its source code easy to read and follow. I can attest to this
fact, as I have read portions of the source myself. The code that pro-
grams the 8259 PIC is particularly well done. MINIX was also
designed as a microkernel-based system so that the file system and
memory manager could be switched with new ones at run time.

Tanenbaum received megabytes of e-mail from people who
wanted to add features to MINIX. Tanenbaum’s goal, however, was
to present his students with something that they could explore as a
learning tool. Adding extra functionality, like demand paging, was
out of the question.

Into the picture came Linus Torvalds, a computer science
student in Finland who decided that he was going to hack MINIX
into a production-quality operating system. In 1991, Linus made an
announcement of his intentions on the MINIX users newsgroup. By
December of 1991, version 0.1 was released and Linux began its
ascendance to worldwide popularity.

NOTE It may seem a bit odd, but one of the original detractors of
Linux was Tanenbaum! In January of 1992, Tanenbaum left a posting
on comp.os.minix titled “Linux is obsolete.” Needless to say, he was
wrong.

Design Goals and Features

According to Linus’ first posting on comp.os.minix, Linux started off
as “just a hobby.” Over the years, it has morphed into a powerful
system that easily holds its own against proprietary flavors of
UNIX. According to the README file in the kernel’s base source
code directory, “Linux is a Unix clone written from scratch by Linus
Torvalds with assistance from a loosely-knit team of hackers across
the Net. It aims towards POSIX compliance.”

POSIX, the Portable Operating System Interface, is a specifica-
tion that establishes a standard set of operating system calls. It was
introduced as an effort to help unify the UNIX operating system.
Different vendors, like IBM, HP, Sun, and SGI, all sell their own
version of UNIX. I should not have to tell you that these vendors
have a vested interest in locking customers in to their own special
blend. The POSIX standard is an effort to at least give the appear-
ance that there is a least common denominator, even if the different
vendors would be more than happy to stab each other in the back.

The POSIX standard is maintained by the IEEE (Institute of
Electrical and Electronics Engineers) and is also known as IEEE
1003.1-2001. The full title is:

68 Chapter 2

1003.1-2001 IEEE Std 1003.1-2001

(Open Group Technical Standard, Issue 6),

Portable Operating System Interface (POSIX®) 2001

The last time I looked, the price of this standard was around $176.
This is why a search for “POSIX” on Google or Yahoo will not prove
very fruitful. Trust me on this. Fortunately, someone in the Linux
development effort bought a copy. It was a good investment. Any
operating system worth its salt will be POSIX compliant.

The following sample list of features supported by Linux reads
like a Christmas list to Santa:

� Multiuser

� Symmetric multiprocessing (SMP)

� Protected mode memory protection

� Demand-paged virtual memory

� Dynamically and statically linked libraries

� Multiple file system support

� Loadable kernel modules (LKMs)

� High-performance TCP/IP stack

If you compare this feature list to MMURTL’s, you will see why I
discussed MMURTL first.

NOTE It would be very easy to fill an entire book with an explana-
tion of the inner workings of Linux. In fact, I reference a couple of such
books at the end of this chapter. I am going to stick to somewhat of a
tourist’s view in the following discussion; this will allow me to highlight
the principal architectural features, which illustrate various memory
management policies, without getting too weighed down.

Linux and Segmentation

Like MMURTL, Linux makes only minimal use of the Pentium’s
segmentation facilities. I must say, I was a little surprised by this. I
was expecting Linux to implement a full-blown, four-ring segmenta-
tion scheme. The Linux kernel does not make use of an LDT. The
GDT, which the kernel does use, is fairly small:

ENTRY(gdt_table)

.quad 0x0000000000000000 /* NULL descriptor */

.quad 0x0000000000000000 /* not used */

.quad 0x00cf9a000000ffff /* 0x10 kernel 4GB code at

0x00000000 */

.quad 0x00cf92000000ffff /* 0x18 kernel 4GB data at

0x00000000 */

.quad 0x00cffa000000ffff /* 0x23 user 4GB code at

0x00000000 */

Memory Management Policies 69

C
h
a
p
te

r
2

.quad 0x00cff2000000ffff /* 0x2b user 4GB data at

0x00000000 */

.quad 0x0000000000000000 /* not used */

.quad 0x0000000000000000 /* not used */

/*

* The APM segments have byte granularity and their bases

* and limits are set at run time.

*/

.quad 0x0040920000000000 /* 0x40 APM set up for bad

BIOSs */

.quad 0x00409a0000000000 /* 0x48 APM CS code */

.quad 0x00009a0000000000 /* 0x50 APM CS 16 code (16 bit) */

.quad 0x0040920000000000 /* 0x58 APM DS data */

.fill NR_CPUS*4,8,0 /* space for TSSs and LDTs */

These structures are defined in /usr/src/linux/arch/i386/
kernel/head.S. The previous assembly code does not use
MASM-compatible directives. Instead, it follows AT&T syntax.
Linux only uses one more kernel segment than MMURTL, and it is
used to accommodate kernel data. Let’s dissect the GDT and place
the results in a table for easy reading (see Table 2.2).

Table 2.2

Kernel Code Kernel Data User Code User Data

Base address 0x0 0x0 0x0 0x0

Size limit 0xFFFFF 0xFFFFF 0xFFFFF 0xFFFFF

Limit units 4KB units 4KB units 4KB units 4KB units

32-bit code/data Yes Yes Yes Yes

Present in
memory

Yes Yes Yes Yes

Privilege 0x0 0x0 0x3 0x3

Type Execute/Read Read/Write Execute/Read Read/Write

The segment selectors corresponding to these descriptors are
displayed in Figure 2.7.

There are 12 descriptors defined in the source code snippet. Four
are not used and four are dedicated to advanced power management
(APM). The GDT, however, is not guaranteed to be a fixed size. As

70 Chapter 2

Figure 2.7

of kernel version 2.4, every CPU on the motherboard gets two seg-
ment descriptors in the GDT. Each CPU gets a descriptor specifying
a Task State Segment (TSS) and a descriptor specifying a segment
that stores a Local Descriptor Table (LDT). This is illustrated in
Figure 2.8.

Notice how each processor’s TSS and LDT segment descriptor is
delimited by two unused segment descriptors.

The segment descriptor pointing to an LDT in Linux typically
stores the address of the default_ldt variable. The
default_ldt variable is basically an LDT with a single NULL
descriptor. It is declared in /usr/src/linux/include/
asm-i386/desc.h.

struct desc_struct

{

unsigned long a,b;

};

The default_ldt variable is defined in /usr/src/linux/
arch/i386/kernel/traps.c.

struct desc_struct default_ldt[] =

{ { 0, 0 }, { 0, 0 }, { 0, 0 },{ 0, 0 }, { 0, 0 }};

The reason that Linux can get away with its minimal GDT is that all
processes use the same linear address space but are stored in differ-
ent regions of physical memory. This is very similar in spirit to
MMURTL’s memory management approach.

Memory Management Policies 71

C
h
a
p
te

r
2

Figure 2.8

Notice the privilege difference between the kernel segments and
the user segments. Unlike MMURTL, which gave every segment a
privilege of zero, Linux institutes two rings of protection. The ker-
nel executes with privilege level 0x0, and user code executes with
privilege level 0x3.

Linux and Paging

The techniques of segmentation and paging are both used to divide
up an address space into distinct regions. So in a way, perhaps the
lack of an elaborate segmentation scheme in Linux is merely an
effort to avoid being redundant. To implement demand paging and
protection, Linux uses Intel’s paging facilities.

Three-Level Paging

In the previous chapter, I examined what is known as a two-level
paging model that uses two bookkeeping data structures: page
directories and page tables. Linux adds another data structure and
extends the linear address that it uses so that it has a three-level pag-

ing model. I assume that this has been implemented to allow Linux
to seamlessly extend itself to 64-bit architectures. The three-level
paging model is displayed in Figure 2.9

The CR3 control register holds the base address of the page global
directory. The highest-order 10-bit section of the linear address
stores an offset address into the page global directory and is added
to the base address in CR3 to specify a page global directory entry.

72 Chapter 2

Figure 2.9

This entry stores the base address to a page middle directory
structure.

The middle 10-bit section of the linear address is added to the
base address in the global page directory entry to specify an entry
in the page middle directory. The entry in the page middle directory
stores the base address of a page table.

The lowest-order 10-bit portion of the linear address is added to
the base address in the page middle directory to specify an entry in
the page table. This page table entry will specify the base address of
a physical 4KB page of memory. The 12-bit portion of the linear
address is an offset into the physical page and specifies an actual
physical byte of memory.

QUESTION
Wait! Hold on a minute! (At least, I hope this is what you are

thinking.) The Pentium is a 32-bit processor that deals with
32-bit linear addresses. How does Linux resolve this fact?

ANSWER
As it turns out, Linux assumes that the portion of the linear

address that serves as an offset into the page middle directory
consists of zero bits. However, the page middle directory is kept
in the address resolution cycle for the sake of forward compatibil-
ity. It is just that Linux fixes the page middle directory so that it
has a single entry. In the case of the 32-bit Pentium, the page
global directory reverts to the page directory we know from ear-
lier. These adjustments are illustrated in Figure 2.10.

Memory Management Policies 73

C
h
a
p
te

r
2

Figure 2.10

To get a ground-zero look at how the engineers saw their own
solution, here is how the Linux source documentation explains
the workaround in /usr/src/linux/include/asm-
i386/pgtable.h:

/*The Linux memory management assumes a three-level page

* table setup. On the i386, we use that, but "fold" the

* mid level into the top-level page table, so that we

* physically have the same two-level page table as the

* i386 mmu expects.

*/

NOTE When Linux runs on a 64-bit processor, the 42-bit linear
address in the three-level model will represent the 42 least significant
bits in a 64-bit linear address. The other, higher-order bits would be
assumed to be zero.

Linux uses a number of C structures to represent table entries. The
page directory and the page table themselves are just arrays of
these 32-bit entries. These structures are defined in /usr/src/
linux/include/asm-i386/page.h.

typedef struct { unsigned long pte_low; } pte_t;

typedef struct { unsigned long pmd; } pmd_t;

typedef struct { unsigned long pgd; } pgd_t;

These structures will change for special cases, like when the
address bus has been extended to 36 bits or when a 64-bit processor
is being used. I am sticking to the run-of-the-mill 32-bit Pentium
scenario for the sake of simplicity.

Remember from the previous chapter that it is the duty of the
operating system to maintain the state of the present flag (P) in the
page table. It is also the duty of the operating system to clear the
dirty bit (D) when a page is loaded into memory. The processor will
set the dirty bit the first time that the page is accessed. This entails
accounting work on the part of the operating system. To this end,
Linux uses a set of macros to perform its accounting. For example,
the following macros are used to query the P flag in the page table
entry, set the page table entry, and clear the page table entry:

#define _PAGE_PRESENT 0x001

#define _PAGE_PROTNONE 0x080 /* If not present */

#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT |

_PAGE_PROTNONE))

#define set_pte(pteptr, pteval) (*(pteptr) = pteval)

#define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0)

There are a multitude of other such flags in /usr/src/linux/
include/asm-i386/pgtable.h. As with many portions of the

74 Chapter 2

Linux code base, these macros take different forms when the kernel
is not running on a 32-bit Pentium.

There is also a significant amount of page metadata that is exter-
nal to Intel’s native paging data structures, which is to say that the
metadata is relevant to Linux without being mandated by the pro-
cessor. For example, Linux allows pages to be locked. A locked page
of memory cannot be written out to disk. Kernel pages are locked.
The kernel also keeps a record of how many processes are using a
particular page of memory. These extra features are supported by
the page structure:

typedef struct page

{

struct list_head list; /* -> Mapping has some page lists.*/

struct address_space *mapping; /* The inode (or ...)

we belong to. */

unsigned long index; /* Our offset within mapping. */

struct page *next_hash; /* Next page sharing our hash bucket

in the pagecache hash table. */

atomic_t count; /* Usage count, see below. */

unsigned long flags; /* atomic flags, some possibly

updated asynchronously */

struct list_head lru; /* Pageout list, eg. active_list;

protected by pagemap_lru_lock!!*/

wait_queue_head_t wait; /* Page locked? Stand in line... */

struct page **pprev_hash; /* Complement to *next_hash. */

struct buffer_head * buffers; /* Buffer maps us to a disk

block. */

void *virtual; /* Kernel virtual address (NULL

if not kmapped, ie. highmem) */

struct zone_struct *zone; /* Memory zone we are in. */

} mem_map_t;

This structure is defined in /usr/src/linux/include/
linux/mm.h. The count member keeps track of how many pro-
cesses are using a page. The count variable is zero if the page is
free. The flags member stores 32 Boolean fields. Its first bit, the
PG_locked field, is used to indicate if a page is locked.

#define PG_locked 0 /* Page is locked. Don't touch. */

#define UnlockPage(page) unlock_page(page)

#define PageLocked(page) test_bit(PG_locked, &(page)->flags)

#define LockPage(page) set_bit(PG_locked, &(page)->flags)

The macros above are also defined in /usr/src/linux/
include/linux/mm.h.

Memory Management Policies 75

C
h
a
p
te

r
2

Page Fault Handling

Page faults are the core mechanism that allow Linux to support
memory protection and demand paging. The page fault handler in
Linux is a function called do_page_fault() defined in
/usr/src/linux/arch/i386/mm/fault.c:

void do_page_fault(struct pt_regs *regs, unsigned long

error_code);

The regs argument is a pointer to a structure containing the con-
tents of the registers when the page fault was generated.

The error_code argument wraps a 3-bit value that was gener-
ated as a result of the page fault. It is this little 3-bit value that is
absolutely crucial. It will determine what the kernel will do. If a
memory access violation has occurred, the kernel will probably kill
the process that made the illegal memory access. Sometimes this
means putting the kibosh on the kernel! Linux uses the Supervi-
sor/User flag in page table entries to implement the distinction
between kernel code and user code.

If a process has attempted to access a page that is on disk (i.e., its
present (P) flag is cleared), the kernel will need to take care of load-
ing the page into memory. This is one feature that definitely
separates Linux from MMURTL. MMURTL only uses paging as a
way to divide up and manage memory. Linux takes things a step fur-
ther and allows pages to be swapped to disk storage. Naturally, this
requires a whole load of additional instructions and logic, making
Linux a far more intricate operating system.

Table 2.3 explains the format of the 3-bit value passed to
do_page_fault and the information that it stores.

Table 2.3

Bit Value Meaning

0 0 Page fault caused by accessing a page that has its present (P)
flag cleared

0 1 Page fault caused by invalid access right

1 0 Page fault caused by access of type execute or type read

1 1 Page fault caused by access of type write

2 0 Page fault occurred while the processor was in kernel mode

2 1 Page fault occurred while the processor was in user mode

Memory Allocation

When Linux boots, the kernel reserves a region of physical memory
to store its code and data structures. The pages of memory that
constitute this region are locked and cannot be written to disk. The

76 Chapter 2

kernel is loaded into physical memory starting at physical address
0x00100000 (i.e., just above 1MB). This is done to avoid over-
writing BIOS code at the bottom of memory and VRAM that lies
within the first megabyte. The size of the kernel’s image in memory
is a function of the features that were built into it when it was com-
piled, so it is not really feasible to give a definite upper boundary to
the kernel’s region in physical memory. The remaining part of phys-
ical memory (not reserved by the kernel, BIOS, or VRAM) is known
as dynamic memory. Figure 2.11 displays this basic organization of
physical memory.

The linear address space is an alternate reality that is created by the
kernel and the processor (the programs happen to think it is real). It
has little or nothing in common with the actual arrangement of code
and data in physical memory. The linear address space of Linux is
broken into two basic regions. The linear address range from 0 to
PAGE_OFFSET–1 is used for user programs. The linear address
range from PAGE_OFFSET to 0xFFFFFFFF (4GB) is reserved for
the kernel. The PAGE_OFFSET macro is defined in /usr/src/
linux/include/asm-i386/page.h as 0xC0000000. This
means that the kernel uses the last gigabyte of linear memory, and
the user applications reside in the first three gigabytes. The layout
of the Linux linear address space is displayed in Figure 2.12.

Memory Management Policies 77

C
h
a
p
te

r
2

Figure 2.11

NOTE A gigabyte of linear address space does not necessarily trans-
late into a gigabyte of physical memory. For example, if the kernel
consumes 4MB of physical memory, only 4MB of linear address space
will be active in the operating system’s gigabyte of linear memory.

The kernel can allocate dynamic memory for itself by invoking one
of three functions:

� unsigned long __get_free_pages(unsigned int

gfp_mask, unsigned int order);

� void * kmalloc (size_t size, int flags);

� static inline void * vmalloc (unsigned long size);

The __get_free_pages() function is defined in /usr/src/
linux/mm/page_alloc.c. It uses the buddy system algorithm
to allocate 2order pages of contiguous memory. The gfp_mask dic-
tates how the free pages will be looked for. For example, if
gfp_mask is set to __GFP_HIGH, the priority of the memory
request is set to the highest level. There are a whole set of
gfp_mask values in /usr/src/linux/include/linux
/mm.h.

The kmalloc() function is defined in /usr/src/linux
/mm/slab.c and allocates size number of bytes. Instead of a
buddy system algorithm, it uses an approach similar to the slab allo-

cator designed by Sun Microsystems in 1994. The kmalloc()

78 Chapter 2

Figure 2.12

function manages 4KB pages internally so that smaller amounts of
memory can be requested.

The vmalloc() function is defined in /usr/src/linux/
include/linux/vmalloc.h. This function allows noncontigu-
ous pages of memory to be allocated. The two previous functions
deal only with contiguous regions of memory. The size argument
indicates the number of pages to allocate.

The kernel allocates dynamic memory for user applications when
the sys_fork() system call is made. The sys_fork() function
causes a process address space to be requisitioned from memory for
the user program. A process address space consists of a set of mem-

ory regions in the computer’s linear address space. Each region is a
contiguous set of linear addresses and is assigned a set of access
rights. The size of each memory region is a multiple of 4KB.

Linux user applications traditionally have four memory regions.
One is used to store the application’s machine code, one is used to
store the application’s data, another serves as a stack, and the
fourth region is used as a heap to provide space for run-time storage
requests. The arrangement of these regions in the linear address
space is a function of the development tools that were used to build
the application and operating system’s program loader. For example,
Figure 2.13 displays two different ways to organize memory
regions.

The sys_fork() function in /usr/src/linux/arch/i386/
kernel/process.c is just a wrapper for do_fork(), which
takes care of the real work. The do_fork() function calls a func-
tion named copy_mm() to take care of creating the new task’s

Memory Management Policies 79

C
h
a
p
te

r
2

Figure 2.13

address space. The copy_mm() function, in turn, calls a function
named mm_init(), which eventually ends up in a call to __get_
free_pages().

This string of function calls creates a memory descriptor for the
new process and populates it. A memory descriptor, in terms of the
C programming language, is just a mm_struct structure in the file
/usr/src/linux/include/linux/sched.h.

struct mm_struct

{

struct vm_area_struct * mmap;

rb_root_t mm_rb;

struct vm_area_struct * mmap_cache;

pgd_t * pgd;

atomic_t mm_users;

atomic_t mm_count;

int map_count;

struct rw_semaphore mmap_sem;

spinlock_t page_table_lock;

struct list_head mmlist;

unsigned long start_code, end_code, start_data, end_data;

unsigned long start_brk, brk, start_stack;

unsigned long arg_start, arg_end, env_start, env_end;

unsigned long rss, total_vm, locked_vm;

unsigned long def_flags;

unsigned long cpu_vm_mask;

unsigned long swap_address;

unsigned dumpable:1;

/* Architecture-specific MM context */

mm_context_t context;

};

The vm_area_struct structure describes a given memory
region. Because a process address space usually consists of several
memory regions, the mm_struct process address space descriptor
will need to keep a list of vm_area_struct variables. This is
what the mmap member variable is for.

The pgd member variable points to the page global directory
allocated to a process address space. Each process in Linux owns a
single page global directory, and this points to one or more page
tables. Each process also has its own CR3 value. This register’s
contents are saved in the task’s TSS when its corresponding task is
suspended.

80 Chapter 2

The total_vm member specifies how many pages have been
allotted for a process, and the locked_vm field determines how
many of these pages are locked. The rss member variable indicates
the number of page frames in RAM that the process is actually
using.

There are a number of fields, like start_code and end_code,
that store the initial and final linear addresses of each memory
region. The location of command line arguments on the task’s
run-time stack is specified by the arg_start and arg_end mem-
ber variables.

Memory Usage

For a system-wide summary of memory usage, use the free
command:

free

total used free shared buffers cached

Mem: 62200 58916 3284 864 2692 17688

-/+ buffers/cache: 38536 23664

Swap: 96380 9480 86900

Total: 158580 68396 90184

Mem and swap are simply physical memory and disk swap space.
Linux tends to keep things simple, and this is part of its appeal to
me. The data displayed by free is actually an abbreviated version
of what you would get by looking in the kernel’s /proc directory:

cat /proc/meminfo

total: used: free: shared: buffers: cached:

Mem: 63692800 39899136 23793664 1110016 6172672 15433728

Swap: 98693120 39428096 59265024

MemTotal: 62200 kB

MemFree: 23236 kB

MemShared: 1084 kB

Buffers: 6028 kB

Cached: 8972 kB

SwapCached: 6100 kB

Active: 10664 kB

Inact_dirty: 11208 kB

Inact_clean: 312 kB

Inact_target: 1780 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 62200 kB

LowFree: 23236 kB

SwapTotal: 96380 kB

SwapFree: 57876 kB

NrSwapPages: 14469 pages

Memory Management Policies 81

C
h
a
p
te

r
2

If you are interested in looking at the memory usage of a particular
process, the ps command can be applied:

ps -o sz,vsz,pmem,pid -C init

SZ VSZ %MEM PID

353 1412 0.1 1

This command pumps out the size in bytes of physical memory
used, the size in bytes of linear address space being used, percent of
memory used, and the process ID of the init command. If you
need to determine which tasks are running on a Linux machine in
order to use the ps command that I just showed you, I would rec-
ommend using pstree. The pstree command displays an ASCII
tree of all the tasks currently running.

Example: Siege Warfare

In the Middle Ages, siege warfare was a common form of battle. A
siege would occur when a larger army surrounded a smaller army
that was holed up inside a stronghold. The besiegers had two basic
options: storm the fortifications or wait the enemy out. Both options
could be expensive. War has always been, and still is, founded on
financial concerns. Storming the stronghold could be costly in terms
of lives. Starving an enemy into submission was also expensive
because it cost a significant amount of money to sustain a standing
army in terms of food and supplies. Although movies may favor the
storming tactic, some of the more spectacular victories were
obtained through patience.

“So, you think you could out-clever us French folk with
your silly knees-bent running about advancing behavior?”

— French guard, Monty Python and the Holy Grail

Because Linux has a two-ring privilege scheme, the innards of the
operating system are not exposed and vulnerable like they are in
DOS. We cannot simply rip out entries in the interrupt vector table
or write messages to the screen by modifying VRAM. We are back
in elementary school: To do anything, we need permission. The ker-
nel policies, in conjunction with Intel hardware, have built
fortifications against malicious programs. The crown jewels, operat-
ing system data structures, have been hidden far behind thick,
formidable walls.

In this example, I will lay siege to Linux in an attempt to demon-
strate its memory protection facilities. As in the Middle Ages, I can
either storm the walls or wait it out. I suspect that waiting it out and

82 Chapter 2

starving the kernel of resources is still the most effective way to
bring a computer to its knees. An example of this kind of attack
would be a memory leak.

I ran the following program on Linux:

/* --starve.c-- */

#include <stdio.h>

void main()

{

unsigned long i;

unsigned long j;

char ch;

unsigned char *ptr;

for(i=0;i<0xFFFFFFFF;i++)

{

printf("malloc(%lu)\n",i);

ptr = malloc(0x100000);

for(j=0;j<0x100000;j++){ ptr[j]=0x7; }

printf("press [enter] key\n");

scanf("%c",&ch);

}

return;

}

The machine I tested this code on had 64MB of DRAM. At about
110MB of allocated virtual memory, my computer’s paging subsys-
tem began to thrash. A few moments later, I lost control of my
machine; I couldn’t even gain the attention of a terminal console to
kill the process. I literally had to unplug my computer. A more insid-
ious version of this program would sleep at odd intervals and only
allocate small bits of memory. This kind of attack tends to creep up
on systems that aren’t being monitored carefully.

Next, I tried the more audacious approach of directly assaulting
the kernel:

/* --brute.c-- */

void main()

{

unsigned char *ptr;

ptr = 0xC00000000;

*ptr ='a';

return;

}

Here is the console output that I received:

[root@localhost root]# cc -o brute brute.c

Memory Management Policies 83

C
h
a
p
te

r
2

[root@localhost root]# ./brute

Segmentation fault

“You silly King . . . ” As you can see, the Linux kernel has been
heavily fortified against such brazen direct attacks. It noticed my
attempt for access to the kernel’s memory image and sent me to
/dev/null. Trying this type of straightforward tactic is about as
wise as starting a land war in Asia. Inconceivable.

NOTE However, there is an option that I haven’t mentioned. The
goal of storming a stronghold is to get inside. There are other, less
obtrusive ways of getting past a heavy stone barrier. At the end of the
day, nothing beats a generous plateful of treachery. Why spend
man-hours of effort to break down a wall when you can sneak by it?

Linux Loadable Kernel Modules (LKMs) present the besieging
army with an opportunity to dress up like opposing troops and sim-
ply walk blithely through the main gate. LKMs are basically
software components that can be dynamically added to the kernel
image, which is loaded in memory, at run time. An LKM becomes a
part of the executing kernel. Why spend all that effort trying to pass
a fortification when you can start on the other side to begin with?

NOTE Once an LKM has been merged with the kernel’s image, the
LKM’s code is a DOS-like situation where the operating system is
naked. In this state, we can write to any device files we want. This
includes /dev/kmem, the kernel’s coveted memory image. We can
also modify the /proc file system or perhaps hook an internal kernel
function. The potential number of uses is almost infinite. Ba ha ha ha
ha (evil laugh).

An LKM is really just an ELF object file that is dynamically linked
with the kernel. You can create an LKM simply by compiling with
the –c option that prevents the linker from being invoked. For
example, if you have an LKM source file named lkm.c, you can
compile it into an object file with:

[root@localhost root]# gcc –c –Wall lkm.c

NOTE The Executable and Linkable Format (ELF) was originally
designed by the UNIX System Laboratories (USL) before it was bought
by Novell. The ELF specification was a part of the Application Binary
Interface (ABI) effort. ELF is a binary format like COFF or Microsoft’s PE
format. In 1995, the Tool Interface Standard (TIS) group came out with
version 1.2 of the ELF specification.

LKMs can be loaded/inserted into the kernel at run time with the
following command:

[root@localhost root]# insmod lkm.o

84 Chapter 2

The insmod program invokes the sys_init_module() system
call, which the kernel uses to register the LKM. If you look at this
system call in /usr/src/linux/kernel/module.c, you will
see that it invokes a similarly named function in the LKM —
init_module(). Try not to get confused by all the various
init_module() functions.

To verify that the module is loaded, you can issue the lsmod
command:

[root@localhost root]# lsmod

Module Size Used by

lkm 880 0 (unused)

ide-cd 27072 0 (autoclean)

cdrom 28512 0 (autoclean) [ide-cd]

soundcore 4464 0 (autoclean)

binfmt_misc 6416 1

tulip 39232 1

ds 7056 2

yenta_socket 9488 2

pcmcia_core 41600 0 [ds yenta_socket]

autofs 11520 0 (autoclean) (unused)

appletalk 20912 0 (autoclean)

ipx 16448 0 (autoclean)

mousedev 4448 1

hid 19024 0 (unused)

input 3840 0 [mousedev hid]

usb-uhci 21536 0 (unused)

usbcore 51712 1 [hid usb-uhci]

ext3 64624 1

jbd 40992 1 [ext3]

Equivalent results can be obtained via:

[root@localhost root]# cat /proc/modules.

This will provide you with a list of currently loaded modules. Natu-
rally, some modules can be written so that they modify the kernel
and are not listed (just a thought). Ba ha ha ha (Neumann laugh).

To remove an LKM from the kernel’s image, you can use the
rmmod command:

[root@localhost root]# rmmod lkm

Note how I did not include the .o suffix as I did with insmod. The
rmmod command will cause the LKM’s cleanup_module()
function to be invoked. You should use this as an opportunity to
restore the system to its previous state.

Memory Management Policies 85

C
h
a
p
te

r
2

NOTE The init_module() and cleanup_module() are the only
functions that are required in order for an object file to serve as an
LKM.

In the following code, I use an LKM to intercept the sys_chdir
system call. This is reminiscent of the DOS example where I stole
the keyboard interrupt. I basically take my own version of
sys_chdir and use it to wrap a call to the actual system call. This
allows me to piggyback the system call code with my own
instructions.

The key to system call swapping is the sys_call_table array,
which is an array of pointers to system call functions in the kernel.
It is analogous to the real mode interrupt vector table. We can
change which address gets jumped to for a given system call by
switching an entry in the sys_call_table pointer array. In my
example code, I make sure to save the old function address so that I
can restore the sys_call_table when I am done.

/* --lkmod.c-- */

#define __KERNEL__ /*instructions are in kernel*/

#define MODULE /*type of kernel code is module code*/

#define LINUX /*keep it portable*/

#include<linux/kernel.h> /*standard LKM include*/

#include<linux/module.h> /*standard LKM include*/

#include<stdio.h> /*need for sprintf()*/

#include <sys/syscall.h> /*need for __NR_chdir*/

#include <linux/sched.h> /*need for "current" pointer in

printStr*/

#include <linux/tty.h> /*need for tty_struct*/

extern void sys_call_table[]; /*array of function pointers*/

void printStr(char *str)

{

struct tty_struct *my_tty;

my_tty = current->tty;

if (my_tty != NULL)

{

(*(my_tty->driver).write)(my_tty,0,str,strlen(str));

(*(my_tty->driver).write)(my_tty,0,"\015\012",2);

}

return;

}

asmlinkage int (*getuid_call)();

86 Chapter 2

asmlinkage int (*saved_call)(const char *);

asmlinkage int my_call(const char *dir)

{

char *uid_str[8];

int uid;

uid = getuid_call();

sprintf((const char*)uid_str,"%d",uid);

printStr((const char*)uid_str);

printStr(dir);

return saved_call(dir);

}

int init_module()

{

printStr("init_module()-start");

saved_call = sys_call_table[__NR_chdir];

sys_call_table[__NR_chdir] = my_call;

getuid_call = sys_call_table[__NR_getuid];

printStr("init_module()-end");

return(0);

}

void cleanup_module()

{

printStr("cleanup()-start");

sys_call_table[__NR_chdir] = saved_call;

printStr("cleanup()-end");

return;

}

Example: Siege Warfare, More Treachery

We have waged a lengthy siege against Linux and have tried a num-
ber of tactics to defeat memory protection. Of the three approaches
that I have presented, starving the enemy into submission is the
path of least resistance. Then again, you never really get inside the
castle walls (i.e., the kernel) with the wait-them-out tactic; you
merely get to watch your quarry inside the castle spasm in their
death throes. Memory leaks provide only a hollow victory in that
they don’t allow you to get past the protective walls of the operating
system.

Memory Management Policies 87

C
h
a
p
te

r
2

Brute force attacks are glaringly fruitless, seeing as how the
Pentium and Linux were explicitly designed to protect against such
overt methods. Trying to barge into the kernel’s linear address
space is akin to banging your head against an anvil — the anvil wins
every time.

LKMs are a cunning solution, but you need to have root privi-
leges to execute programs such as insmod (ah ha! there’s a
catch!). Most people who obtain root don’t need LKMs once they
achieve that vaunted status anyway.

An ingenious and more sophisticated approach is needed.
One of the most devious tactics that I can think of is the buffer

overflow attack. In the medieval days, a buffer overflow attack
would be implemented by poisoning the besieged army’s supply of
food and water. They would consume the bad provisions and start
acting confused and irrational.

Buffer overflow techniques were made famous by Aleph One’s
article in issue 49 of Phrack magazine. They rely on a function that
uses a call like strcpy() to copy an argument to a local buffer. If a
large enough argument is fed to the function, you can overflow the
local buffer so that the function’s activation record is corrupted.
This allows skillful attackers to place their own return addresses
and executable code on the activation record and literally hijack the
processor’s path of execution.

Here is a fairly simple example:

/* --bufferFlow.c-- */

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

void overflow(char *str)

{

char buffer[4];

strcpy(buffer,str);

return;

}

void hijacked()

{

printf("\tYou've been hijacked!\n");

exit(0);

return;

}

void main()

{

88 Chapter 2

char bigbuff[]={'a','b','c','d', /*buffer*/

'e','f','g','h', /* ebp */

'\x0','\x0','\x0','\x0'}; /*IP*/

void *fptr;

unsigned long *lptr;

printf("bigbuff = %s\n",bigbuff);

fptr = hijacked;

lptr = (unsigned long*)(&bigbuff[8]);

*lptr = (unsigned long)fptr;

printf("In main()\n");

overflow(bigbuff);

printf("Back in main()\n");

return;

}

When this program is run, the following output is streamed to the
console:

bigbuff = abcdefgh

In main()

You've been hijacked!

The key of this technique lies in the activation record of the function
to which you are feeding arguments. Figure 2.14 displays the nor-
mal activation record of the overflow() function.

When the overflow() function is called from main(), the code
in main() will pop the address of the string argument on to the
stack and call overflow(). This will cause EIP to be indirectly
placed on the stack also.

Memory Management Policies 89

C
h
a
p
te

r
2

Figure 2.14

overflow(bigbuff);

0009d 8d 4d f4 lea eax, DWORD PTR _bigbuff$[ebp]

000a0 51 push eax

000a1 e8 00 00 00 00 call _overflow

000a6 83 c4 04 add esp, 4

Once execution has jumped to overflow(), the EBP register will
be popped on the stack so that it can be used as a frame of reference
for the activation record. In addition, space will be allocated on the
stack for the buffer[4] local array.

00000 55 push ebp

00001 8b ec mov ebp, esp

00003 51 push ecx

This leaves us with the 16-byte activation record in Figure 2.14. To
alter the return address, we merely feed overflow() an argu-
ment that is 12 bytes in size. The strcpy() function does the rest
by placing 12 bytes in memory starting at the storage allocated for
buffer.

The best way to understand this is visually. The before and after
strcpy() snapshots of the overflow() stack are displayed in
Figure 2.15. Notice how the original return address bytes (ret1a,
… , ret1d) are replaced with four new bytes (ret2a, …,

ret2d).

Imagine what would happen if the function to which we passed the
oversized argument was in the kernel? You could jump to another
function in the kernel. You can augment this technique by placing
extra executable code on the stack and having execution jump to
that code. This would allow you to execute any code of your

90 Chapter 2

Figure 2.15

choosing and have it execute in kernel mode. Performing a success-
ful buffer overflow attack can give you ownership of a machine. Ba
ha ha ha . . .

Do not lament. There is hope for those soldiers who are defend-
ing the walls of a besieged castle. Buffer overflow attacks can be
foiled by replacing strcpy() with strncpy(). The general idea
is to replace copying functions with functions that impose a specific
boundary. This is more a matter of discipline and code audits than
anything else. The people at OpenBSD know this more than anyone
else (www.openbsd.com). Commercial vendors like Microsoft are so
busy churning out new versions that they cannot invest the time
needed to protect against these types of attacks.

In the Middle Ages, defenders of a fortress could rain arrows and
boiling oil down on attackers. These defenses were very effective,
seeing as how the aggressors typically had nowhere to hide. Having
thick walls didn’t hurt either. Likewise, Linux sysops can do a num-
ber of things to harden their production systems and make attacking
them much more expensive:

Table 2.4

Measure Benefit

Shut down unnecessary services Decrease number of potential targets

Install an intrusion detection system Detect Trojan horses and compromised
binaries

Implement a VPN Foil sniffers

Disable all dial-up servers Remove the easy path around your
firewall

Place public servers in a demilitarized
zone

Limit damage done if public boxes are
hacked

Disable zone transfers on DNS servers Prevent information leakage

Implement password changes/checking Prevent usage of weak and old
passwords

Log data with a dedicated syslog
machine

Save forensic evidence in the event of
an attack

Enable port scan detection software Preempt an attack before it happens

Disable NFS and sendmail Use SSH and qmail

Establish phone call protocols Reduce the risk of social engineering
attacks

Install a dedicated firewall (i.e.,
CheckPoint)

Limit/monitor network traffic to the
outside

Table 2.4 provides only a small sample of possible measures. If any
of the items that I mentioned are foreign to you, then you will need
to do a little homework. For an extended treatment of security on
Linux, I recommend a couple of books in the reference section.
Some exploits, like buffer overflows, are hard to prevent if you don’t

Memory Management Policies 91

C
h
a
p
te

r
2

have access to source code. This is why you will probably want to
visit www.securityfocus.com and get on their bugtraq mailing list.
This gives you a way to hear about problems as they are reported.

Case Study: Windows

Windows is a closed source operating system, and this will probably
somewhat limit the depth of my examination. DOS is another closed
source project from Microsoft, but DOS is literally so small that this
fact doesn’t have much of an impact. You could probably disassem-
ble DOS in a few weeks. I am pretty sure that some of Microsoft’s
competitors actually took this route. With the Windows operating
system, full-scale reverse engineering is just not feasible. In this
case, all I have to go on is whatever Microsoft gives me. The rest
will be pure detective work: picking up leads and seeing where they
take me.

“We work in the dark
We do what we can

We give what we have.
Our doubt is our passion

And our passion is our task.
The rest is the madness of art.”

— Henry James

Of the four operating systems that are examined in this chapter,
Windows is, by far, the largest and most complicated. The engineers
who designed Windows should probably consider it an accomplish-
ment just to have been able to successfully manage the construction
of such a behemoth. Thus, I will spend more effort describing how
this leviathan works.

Historical Forces

Microsoft’s DOS operating system has never really died off. I have
seen DOS 6.22 books at Barnes & Noble. In fact, you can still buy a
copy of IBM’s PC DOS. This is known as PC DOS 2000, found at
http://www3.ibm.com/software/os/dos.

Unofficially, however, the death knell of DOS was sounded when
Windows 1.0 was released on November 20, 1985. A little over two
years later, Windows 2.0 was released. Windows 2.0 ran on an Intel
80286 in protected mode. The first truly popular version of Win-
dows, 3.1, was presented to the public on April 6, 1992. It provided a

92 Chapter 2

modest GUI and ran on affordable hardware. Microsoft also made a
foray into peer-to-peer networking with Windows 3.11. These ver-
sions of Windows all required one thing: an existing DOS
installation. This is because Windows, during these early years, was
more of a glorified DOS program than a stand-alone operating sys-
tem. It is a well-known fact that Windows 3.11 and its predecessors
used the file system manager (i.e., INT 21 system calls) provided by
DOS.

In August of 1995, Windows 95 was made available to the public.
It was a major facelift and was completely independent of DOS,
although it did ship with MS-DOS 7.0. Windows 95 supported
advanced features like pre-emptive multitasking and TCP/IP net-
working. Windows 95 also possessed a much more attractive user
interface. It was a smashing success. Microsoft followed Windows
95 with Windows 98, whose success was not as celebrated.

The limitation of Windows 95 and 98 was that they targeted the
average consumer. Windows 95 and 98 both ran a broad spectrum of
desktop applications, but that was about it. The memory protection
was still weak, and they had a tendency to crash, or freeze, when
multiple applications were loaded (I am a voice of experience). In
other words, neither of these operating systems was intended to
run as a business server.

In the early 1990s, Microsoft did not have an industrial-strength,
enterprise level operating system to sell, like UNIX, VMS, or
OS/390. Computers that ran the Windows operating system were
viewed by mainframe vendors as nothing more than embroidered
clients. The high-end system vendors, like IBM and HP, could turn
up their noses and smirk.

“Here’s a nickel, kid. Buy yourself a better computer.”
— UNIX Admin from “Dilbert”

Bill Gates decided that he wanted in; the potential for profit was too
much to resist. So, like any political action committee, he went out
and bought the best that money could buy. He hired Dave Cutler,
the lead architect of Digital Equipment Corporation’s (DEC) VMS
operating system. Cutler also played a pivotal role in the develop-
ment of DEC’s RSX-11 system. Many people don’t know about
Cutler, and he doesn’t get the publicity that someone like Ken
Thompson commands. Nevertheless, hiring Cutler and his small
group of engineers was the best money that Gates ever spent. In
1994, Windows NT 3.1 was released and marked the beginning of
Microsoft’s wildly profitable ascent into the server market.

Memory Management Policies 93

C
h
a
p
te

r
2

ASIDE

In 1997, I was hired by an ERP company in the Midwest. I
walked smack into the middle of a major effort to port their 16
million line, middleware code base to Windows NT 4.0. This,
in and of itself, was enough to prove to me that NT was finally
gaining attention. Porting a 16 million line code base is any-
thing but cheap. In fact, it is more like getting married: You
don’t do it unless you are willing to make a significant
long-term commitment.

There were complaints from the engineers undertaking
the port. Their primary gripe was that NT was not a multiuser
system. Microsoft, you see, was espousing a fundamentally
different network model. Instead of having everyone log into
a central machine, Microsoft wanted program components to
be spread out so that applications could take advantage of the
processing power on each machine in the network. This
new paradigm was christened the Distributed Network Archi-

tecture (DNA). It sent some UNIX developers I know into
conniptions.

Microsoft attempted to mainstream NT in an effort to appeal to a
larger audience. The result of this attempt was Windows 2000,
which was unleashed on the public in February of 2000. Windows
2000 was based heavily on the NT kernel, and it was originally
referred to as Windows NT 5.0. However, Microsoft still was in the
business of building and selling low-end operating systems belong-
ing to the Windows 3.1/95/98 lineage. For example, in September of
2000, Microsoft released Windows Millennium Edition (ME), which
was the next iteration of Windows 98.

On October 25, 2001, Microsoft unveiled its latest incarnation of
Windows: Windows XP. XP is intended to target both consumers
and businesses. It also offers Microsoft the opportunity to merge
the Windows 2000 product line with the Windows ME product line.
The Windows XP kernel is an extension of the Windows 2000 ker-
nel. So in a way, it is more of a descendent of NT, with extra driver
support to offer the plug-and-play features of Windows ME.

An abbreviated version of the family tree of Microsoft operating
systems is displayed in Figure 2.16 on the following page.

Microsoft has historically made a point of jealously protecting
their intellectual property. I am not making a judgment call, just
stating a fact. The source code to Windows is carefully hidden away
on a cluster of servers in Redmond. Only companies that Microsoft

94 Chapter 2

judges as being “organizations that have a long-term commitment to
Windows” are allowed to view the source code. This includes
OEMs, like Compaq, that need to tweak Windows to run on their
hardware. The marketing people at Microsoft like to make a big deal
when OEMs come to Redmond to pick up their source code CDs.
The OEMs typically fly to Redmond in a helicopter and are handed
special suitcases that resemble something you might use to carry
radioactive material. Considering that Microsoft pours billions of
dollars a year into Windows, this is not a bad analogy. Those CDs
are worth their weight in weapons-grade plutonium.

ASIDE

Microsoft has recently announced that it will share the source
code to its .NET tool suite with academic programs through-
out the United States. My guess is that this is a response to
the growing popularity of Linux, which is currently the sys-
tem of choice for research. UNIX gained a strong following
among universities in the 1970s, back when Bell Labs gave its
UNIX source code to computer science departments. These
same 1970s students went out into the marketplace and made
UNIX the dominant high-end player that it is today. The same
could happen with Linux, and I think this scares Microsoft.

On the other hand, what gains a stronghold at universities
does not always gain a foothold in the real world. The RISC
architecture is a darling in many academic programs, but un-
less you are looking at Apple PCs or high-end UNIX servers,
you will be stuck with CISC. CISC is not going to die no mat-

Memory Management Policies 95

C
h
a
p
te

r
2

Figure 2.16

ter how much the professors want it to.
Likewise, Microsoft is not going to die because Windows

runs on CISC and the company knows how to support and
document its products. Anyone who has an MSDN subscrip-
tion knows that Microsoft’s documentation is exhaustive and
complete. This is more than I can say for the scattered collec-
tion of man pages, textinfo files, HOWTOs, and README
files that you get with the typical Linux distribution. Bill
Gates pours billions of dollars into Windows, and it shows.

For the following discussion, I am going to focus on the Windows
NT/2000/XP family of operating systems. This branch of the Win-
dows family tree does a better job of isolating and protecting
applications from each other and the kernel. What else would you
expect from a guy like Dave Cutler? So when I refer to “Windows,”
I am talking about Windows NT/2000/XP and not 95/98/ME.

Memory Map Overview

Windows uses both the segmentation and paging facilities of the
Pentium processor. This means that, like Linux and MMURTL,
applications see the world in terms of a “fake” linear address space
instead of an actual physical address space. Again, like Linux and
MMURTL, the Windows 32-bit, 4GB linear address space is broken
up into two sections. For normal, consumer-based versions of Win-
dows, the kernel occupies the upper 2GB of linear memory
(0x80000000 to 0xFFFFFFFF). Each user process gets its own
private linear address region in the lower 2GB (0x0 to
0x7FFFFFFF). This layout of memory is displayed in Figure 2.17.

96 Chapter 2

Figure 2.17

NOTE As I have mentioned before, 2GB of linear address space
does not require 2GB of physical storage; it’s more of a bookkeeping
convention.

For applications that are memory intensive, like databases, there are
versions of Windows (i.e., Windows 2000 Advanced Server and Win-
dows 2000 Datacenter Server) that pack the kernel into the topmost
gigabyte of linear address space so that the applications can have
3GB of linear address space. This feature is enabled via the follow-
ing sort of entry in BOOT.INI:

multi(0)disk(0)rdisk(0)partition(2)\WINNT="Windows

2000 Advanced Server" /3GB

Windows is also able to take advantage of the PAE flag in CR4 that
allows 36 address lines (i.e., 64GB) to be used instead of the normal
32. Naturally, Microsoft had to invent its own acronym so you would
think they had invented it. The facility, in Windows, that allows a
32-bit application to use more than 2GB of physical memory is
known as Address Windowing Extensions (AWE). In order to take
advantage of AWE, one of the core kernel binaries has to be
replaced. Specifically, the Ntoskrnl.exe executable must be
replaced by Ntkrnlpa.exe. AWE is supported by all of the Win-
dows 2000 implementations. It is enabled by the /PAE switch in
BOOT.INI.

multi(0)disk(0)rdisk(0)partition(2)\WINNT="Windows

2000 Advanced Server" /PAE

Windows supports two rings of memory protection. The operating
system runs in kernel mode, which is another way to say that it exe-
cutes at privilege level 0x0. User processes execute at privilege
level 0x3 (also called user mode). I bet you see a pattern developing

Memory Management Policies 97

C
h
a
p
te

r
2

Figure 2.18

here. Both MMURTL and Linux used this same type of two-ring
scheme so that the paging facilities of the Pentium could provide the
bulk of memory management accounting work. MMURTL and
Linux also make only minimal use of segmentation, seeing as how it
is a somewhat redundant memory partitioning technology. I suspect
that Windows will also eschew an involved segmentation approach
in favor of using paging to divvy up memory. As we will see in the
following section, my suspicions were correct.

The operating system is the only real universally visible con-
struct. Applications might be isolated from each other, each one in
its own private 2GB linear address space, but they all see the oper-
ating system as occupying the bottom portion of memory. Figure
2.19 displays the most common topography of the operating sys-
tem’s components.

Some of the regions in Figure 2.19 are not exact in terms of their
starting and stopping range because some components of the oper-
ating system address space are dynamic. The really important thing
to take from Figure 2.19 is that the kernel’s machine instructions
are secluded in the basement of the operating system’s linear
address space. The remaining space is taken up by data structures
of one form or another.

98 Chapter 2

Figure 2.19

Windows and Segmentation

I don’t have access to the full-blown source code distribution on
Windows. However, I have lurked around in device driver header
files shipped with the Windows 2000 DDK, and this is where I
obtained my first lead with regard to how Windows manages its
memory segments. This makes sense because device drivers, by
their nature, access the kernel. In a header file named ntddk.h,
the following macros are defined:

Table 2.5

Macro Meaning

KGDT_NULL Null selector (points to vacant entry at start of GDT)

KGDT_R0_CODE Selector to kernel code segment descriptor

KGDT_R0_DATA Selector to kernel stack segment descriptor

n0 KGDT_R3_CODE Selector to user code segment descriptor

KGDT_R3_DATA Selector to user stack/data segment descriptor

KGDT_TSS Selector to segment descriptor storing the TSS
(multitasking)

KGDT_R0_PCR Selector to segment containing the Process Control Region

KGDT_R3_TEB Selector to segment containing the Thread Environment
Block

KGDT_VDM_TILE Selector to segment containing the DOS virtual machine

KGDT_LDT Selector to segment containing the LDT

As you can see, the number of selectors is pretty scarce. This
implies that the number of descriptors is also small. However, I
don’t have enough evidence to support this assumption, so I am
going to have to take drastic measures. I am going to have to use a
kernel debugger (gasp, . . . no, not that, . . . not the kernel debugger!).

Special Weapons and Tactics

A kernel debugger is a special application that can debug the Win-
dows operating system. You can get your hands dirty with a kernel
debugger by downloading the Windows Customer Support Diagnos-

tics tool set. It is free and available at Microsoft’s web site. There
are three debuggers that are included:

� NTSD (and CDB)

� KD

� WinDbg

NTSD is the NT Symbolic Debugger. CDB is a special version of
NTSD that is intended to debug console applications (i.e., Console

Debugger). NTSD and CDB are both geared toward looking at user
mode applications, so we’re not really interested in them. WinDbg is

Memory Management Policies 99

C
h
a
p
te

r
2

a Win32 GUI program that can be used to look at both kernel mode

and user mode code. KD, Kernel Debugger, is the console equivalent

of WinDbg. KD comes in three flavors: I386KD.EXE,

ALPHAKD.EXE, and IA64KD.EXE. I am assuming that you are on

a Pentium machine, so the one you would need to use is

I386KD.EXE.

Debugging a live kernel typically requires a special setup. A tar-

get machine, which is running the kernel under scrutiny, is

connected by a NULL modem to a host machine. The kernel

debugger lives on the host machine so that it can watch the kernel

without becoming part of the action if the target machine becomes

unstable. A NULL modem is just a special kind of serial cable. This

target-host machine installation is illustrated in Figure 2.20.

NOTE In discussions of kernel debugging, you may hear the term

checked build mentioned. A checked build is just a specially compiled

version of the Windows kernel that has been built with the DEBUG

compile-time flag activated. Checked builds are only shipped with

high-end MSDN subscriptions. This DEBUG setting results in a whole

load of extra error-checking code being placed into the kernel binaries

(i.e., ASSERT()). Normally when an error occurs in the retail version

of the kernel, the system will become unstable and crash. The checked

build is intended to catch errors that would normally cause a crash so

that the operating system can be debugged. The cost of this extra

supervision is memory and execution time, but this usually isn’t a

major issue for someone trying to see why their kernel mode driver is

bringing Windows down.

100 Chapter 2

Figure 2.20

If you don’t have access to a second machine, you can still use a
kernel debugger to look under the hood. However, in this case, the
kernel will be dead. Specifically, you will need to crash your Win-
dows computer so that it dumps an image of memory to disk. This
is exactly what happens when the infamous “Blue Screen of Death”
(BSOD) appears. There are several types of memory dumps that
can be performed:

� Complete memory dump

� Kernel memory dump

� Small memory dump

A memory dump is the snapshot of a system when it died. A com-
plete memory dump makes sure that everything but the kitchen
sink ends up in the dump file. A kernel memory dump limits its con-
tents to the kernel code and data. The small memory dump is a
64KB file containing a minimal amount of system status
information.

NOTE Regardless of the type of memory dump that occurs, the
dump file will be placed in %SystemRoot%\memory.dmp.

To specify the type of memory dump that you want the kernel to
write to disk during a crash, open the Windows Control Panel and
double-click on the System icon. Select the Advanced tab and click
on the Startup and Recovery button. The dialog box that should
appear is displayed in Figure 2.21.

Memory Management Policies 101

C
h
a
p
te

r
2

Figure 2.21

Crashing Windows with a Keystroke

Creating a memory dump is easier than you think. My favorite tech-
nique requires you to open up the registry to the following key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\

i8042prt\Parameters

Once you are there, add the string value CrashOnCtrlScroll,
and set it to the value 0x1. You have just added a big red switch to
your keyboard. Back in the 1980s, the IBM PC shipped with a big
red switch that turned the machine on and off. If DOS got corrupted,
you could always hit the big red switch. To activate this switch (and
I know you can’t help yourself), press the rightmost Ctrl key and
hold it down while pressing the Scroll/Lock key twice. This will
crash your computer, and your screen will salute you with a BSOD.
Let the screen countdown continue until your computer reboots.

When you log back into Windows, a Memory.dmp file should be
waiting for you.

NOTE The author and publisher of this book take no responsibility
for any damage produced by the information and source code in this
text. If crashing your machine to produce a memory dump seems too
precarious, please read the online help that accompanies the Cus-
tomer Support Diagnostics tool kit.

Reverse Engineering the GDT

As I mentioned before, a memory dump is a snapshot of the
machine’s state when it crashed. The kernel debugger will allow
you to sift through this information like Agent Scully performing an
autopsy. I started in my quest for GDT information by loading the
memory dump into memory with the kernel debugger.

E:\Program Files\Debuggers\bin>I386kd -z e:\winnt\memory.dmp

Microsoft(R) Windows 2000 Kernel Debugger

Version 5.00.2184.1

Copyright (C) Microsoft Corp. 1981-1999

Symbol search path is: E:\WINNT\Symbols

Loading Dump File [e:\winnt\memory.dmp]

Kernel Dump File Only kernel address space is available

Kernel Version 2195: Service Pack 2 UP Free

Kernel base = 0x80400000 PsLoadedModuleList = 0x8046ccf0

Loaded kdextx86 extension DLL

Loaded userkdx extension DLL

102 Chapter 2

Loaded dbghelp extension DLL

f70c20bd 5e pop esi

kd>

NOTE You will need to make sure that you have the latest kernel
symbols installed on your computer. These allow the debugger to map
kernel symbols to addresses. It is important to make sure that you
have the correct version of symbols too. If your kernel is build 2195

SP 2 (Service Pack 2), you will need symbols for build 2195 SP 2.
You can determine your build and service pack number by opening

the Windows Control Panel and clicking on the System icon. The panel
marked General should specify the version status of your Windows
installation. If your symbols are the wrong version or the debugger
cannot find them, the kernel debugger will display an error message
having to do with checksums or missing files. I spent several very frus-
trating hours figuring this out one particular Saturday.

Finally, you will need to set the _NT_SYMBOL_PATH environmental
variable to the directory containing your symbol files (i.e., e:\winnt\
symbols). The kernel debugger will use this variable to find the sym-
bol files at run time.

Once I had the kernel’s state loaded up, I examined the GDTR reg-
ister. This stores the base linear address and limit of the GDT. The
debugger views GDTR in terms of two smaller registers (GDTR
and GDTL). The r command is used to view the contents of
registers:

kd> r gdtr

r gdtr

gdtr=80036000

kd> r gdtl

r gdtl

gdtl=000003ff

This told me that the GDT resides at a linear address of
0x80036000 and consists of 128 64-bit GDT entries (i.e., 3FF
bytes). I used the dump command to look at the actual GDT entries:

kd> d 80036000
d 80036000

80036000 00 00 00 00 00 00 00 00-ff ff 00 00 00 9b cf 00

80036010 ff ff 00 00 00 93 cf 00-ff ff 00 00 00 fb cf 00

80036020 ff ff 00 00 00 f3 cf 00-ab 20 00 20 24 8b 00 80 $...

80036030 01 00 00 f0 df 93 c0 ff-ff 0f 00 00 00 f3 40 00@.

80036040 ff ff 00 04 00 f2 00 00-00 00 00 00 00 00 00 00

80036050 68 00 80 34 47 89 00 80-68 00 e8 34 47 89 00 80 h..4G...h..4G...

80036060 ff ff c0 2a 02 93 00 00-ff 3f 00 80 0b 92 00 00 ...*.....?......

80036070 ff 03 00 70 ff 92 00 ff-ff ff 00 00 40 9a 00 80 ...p........@...

kd>

Memory Management Policies 103

C
h
a
p
te

r
2

After that, it was just a matter of sifting through 64-bit length strips
of memory. What I came up with was a list of 25 live segment
descriptors. The rest were vacant (i.e., the present flag was
cleared). Given that a GDT is capable of storing 8,192 64-bit entries,
Windows is only using a very small fraction of the possible total
entries.

Kernel Segment Descriptors (Privilege = 0)

0000 Bas=00000000 Lim=00000000 Bytes DPL=0 NP

0008 Bas=00000000 Lim=000fffff Pages DPL=0 P Code RE A

0010 Bas=00000000 Lim=000fffff Pages DPL=0 P Data RW A

0030 Bas=ffdff000 Lim=00000001 Pages DPL=0 P Data RW A

0060 Bas=00022ac0 Lim=0000ffff Bytes DPL=0 P Data RW A

0068 Bas=000b8000 Lim=00003fff Bytes DPL=0 P Data RW

0070 Bas=ffff7000 Lim=000003ff Bytes DPL=0 P Data RW

0078 Bas=80400000 Lim=0000ffff Bytes DPL=0 P Code RE

0080 Bas=80400000 Lim=0000ffff Bytes DPL=0 P Data RW

0088 Bas=00000000 Lim=00000000 Bytes DPL=0 P Data RW

00e0 Bas=f7050000 Lim=0000ffff Bytes DPL=0 P Code RE A

00e8 Bas=00000000 Lim=0000ffff Bytes DPL=0 P Data RW

00f0 Bas=8042df4c Lim=000003b7 Bytes DPL=0 P Code EO

00f8 Bas=00000000 Lim=0000ffff Bytes DPL=0 P Data RW

0100 Bas=f7060000 Lim=0000ffff Bytes DPL=0 P Data RW A

0108 Bas=f7060000 Lim=0000ffff Bytes DPL=0 P Data RW A

0110 Bas=f7060000 Lim=0000ffff Bytes DPL=0 P Data RW A

User Segment Descriptors (Privilege = 3)

0018 Bas=00000000 Lim=000fffff Pages DPL=3 P Code RE A

0020 Bas=00000000 Lim=000fffff Pages DPL=3 P Data RW A

0038 Bas=00000000 Lim=00000fff Bytes DPL=3 P Data RW A

0040 Bas=00000400 Lim=0000ffff Bytes DPL=3 P Data RW

TSS Segment Descriptors (Used For Multitasking)

0028 Bas=80242000 Lim=000020ab Bytes DPL=0 P TSS32 B

0050 Bas=80473480 Lim=00000068 Bytes DPL=0 P TSS32 A

0058 Bas=804734e8 Lim=00000068 Bytes DPL=0 P TSS32 A

00a0 Bas=8147d468 Lim=00000068 Bytes DPL=0 P TSS32 A

I discovered that my initial suspicions were warranted. Windows,
for the most part, makes only minimal use of segmentation. The
segmentation scheme that is implemented has only two privilege
levels (0 and 3) so that it can rely on paging to do most of the actual
memory management and protection.

104 Chapter 2

Windows and Paging

The bulk of Windows memory management is built upon paging
hardware. Windows uses the Pentium’s paging facilities to imple-
ment both memory protection and demand paging. As with the last
section, I do not have access to the source code that implements
paging. This means that I’ll have to try and validate the existence of
features by looking for related API functions, special tools, and
other indirect means.

Linear Address Space Taxonomy

The memory that constitutes the linear address space of a user
application can be classified as one of three different species:

� Free

� Reserved

� Committed

Free memory is not being used by an application. To understand
reserved and committed memory, it is helpful to use a restaurant
analogy. When you call a restaurant and reserve a table, you are not
actually sitting at the table, but you know it will be there when you
need it. Not until you walk into the restaurant and sit down have
you made a commitment to spend money.

Likewise, reserved memory is nothing more than a range of linear
addresses that has been set aside for future use. Trying to access
linear memory that is reserved produces a page fault because no
physical memory has been allocated yet. Committed memory is a
range of linear addresses for which physical storage in memory or
on disk has been allocated. This two-phase commit, to borrow a
phrase from transaction theory, allows memory to be reserved. This
approach, which delays physical memory allocation until the last
minute, belongs to a school of algorithms known as lazy evaluation.

The concepts of reserved and committed memory are reflected
in the Win32 API. Specifically, there is a function called Virtual-
Alloc() that allows memory to be reserved or committed.

Given that allocation of linear address regions consists of two
phases, it only makes sense that the freeing of linear memory is
also comprised of two phases. Linear memory is de-committed so
that the memory region has reverted to the reserved state, and then
it is released. VirtualFree() is a Win32 API function that pro-
vides this mechanism to user applications.

Consider the following example:

Memory Management Policies 105

C
h
a
p
te

r
2

#include<windows.h>

#include<stdio.h>

void main()

{

long *ptr;

unsigned long nbytes = 1024;

ptr = VirtualAlloc(NULL,nbytes,MEM_RESERVE,PAGE_READWRITE);

/*

memory is reserved: this will cause application to crash

ptr[64]='a';

*/

VirtualAlloc(ptr,nbytes,MEM_COMMIT,PAGE_READWRITE);

ptr[64]='a';

if(VirtualLock(ptr,nbytes)){ printf("page locked\n"); }

else{ printf("lock failed\n"); }

if(VirtualUnlock(ptr,nbytes)){ printf("page unlocked\n"); }

else{ printf("unlock failed\n"); }

VirtualFree(ptr,nbytes,MEM_DECOMMIT);

/*

memory is reserved: this will cause application to crash

ptr[64]='a';

*/

VirtualFree(ptr,nbytes,MEM_RELEASE);

return;

}

If memory is accessed while it is in the reserved state, the applica-
tion will crash. You can re-insert the code that has been commented
out to prove this to yourself.

As with Linux, pages of memory can be locked. User programs
can use the VirtualLock() and VirtualUnlock() functions
to request that a region of linear memory is locked. However, the
kernel is free to ignore this request. The only way to guarantee
that a region of linear memory is locked is to invoke kernel mode
functions like MmLockPageableCodeSection() and MmLock-
PageableDataSection(). Unfortunately, these calls are
internal to the kernel and normally cannot be invoked from user
space.

Musical Chairs for Pages

In the game of musical chairs, a large group of people compete to
occupy a limited number of chairs. There are always a few people
who end up without a chair. This is the kind of scenario that a page

106 Chapter 2

of memory faces. A page would like to be in physical memory, but
there are a limited number of page frames available in DRAM.

A working set is the subset of pages in a linear address space that
actually reside in physical memory. Each user application has a
working set, known as a process working set. The operating system
also has a working set, known as the system working set. If you look
at Figure 2.19, you will see that regions of the operating system’s
linear address space are reserved for keeping track of process and
system working sets. To make efficient use of physical memory,
Windows tracks the number of pages allocated to each working set
and can expand or trim the number of page frames allotted. The
default minimum and maximum working set sizes are depicted in
Table 2.6.

Table 2.6

Physical DRAM Available Default Minimum Default Maximum

Less than 20MB 20 pages 45 pages

20-32MB 30 pages 145 pages

More than 32MB 50 pages 345 pages

The default maximum values can be transgressed if enough free
page frames are available. This can be initiated by a user application
through a call to the SetProcessWorkingSetSize() function.
The only catch is that the application making the call will pass its
process handle to the function, and SetProcessWorkingSet-
Size() will verify that the invoking application has the necessary
PROCESS_SET_QUOTA privileges. If you merely want to deter-
mine the size of a working set, you can use the GetProcess-
WorkingSetSize() Win32 function.

In addition to managing working sets, Windows also maintains
data on all the pages that are located in physical memory as a whole.
Windows uses what is known as the Page Frame Number database

(PFN) to track information regarding pages in DRAM. The PFN
database is an array of data structures. Each page in physical mem-
ory has an entry. You can use the kernel debugger to get a status
report from the PFN database:

kd> !memusage

!memusage

loading PFN database

loading (99% complete)

Zeroed: 1550 (6200 kb)

Free: 1 (4 kb)

Standby: 11424 (45696 kb)

Modified: 683 (2732 kb)

Memory Management Policies 107

C
h
a
p
te

r
2

ModifiedNoWrite: 0 (0 kb)

Active/Valid: 19109 (76436 kb)

Transition: 0 (0 kb)

Unknown: 0 (0 kb)

TOTAL: 32767 (131068 kb)

As you can see, there are eight different types of page states. These
types are enumerated and explained in Table 2.7.

Table 2.7

Page Frame Type Meaning

Zeroed Page is free and initialized with zero values

Free Page is free but is uninitialized (stores garbage bytes)

Standby Recently removed from a working set, and was not modified
while in the set

Modified Recently removed from a working set, and was modified
while in the set

ModifiedNowrite Like a “modified” page but will not be written to disk

Active/Valid Page is part of a current working set

Transition Page is in digital purgatory between the disk and physical
memory

Unknown Danger! danger!, bad page frame, has caused hardware
errors

Memory Protection

Given Windows’ rather minimal use of segmentation, I suspect that
page faults provide the core memory protection mechanism.
Remember that Windows has only two rings of privilege (kernel
mode and user mode). This fits perfectly with the Supervisor/User
privilege scheme that Intel paging supports. As with Linux and
MMURTL, when a user program attempts to access memory
belonging to the kernel, a page fault is generated and passed on to
Windows to do what it sees fit. Typically, this means halting the pro-
gram that caused the page fault.

The nature of the page directory and page table bookkeeping also
serves to keep one process from accessing physical memory being
used by another process. Each process in Windows is supplied with
its own page directory. This ensures that the linear address space
used by the process will map to a unique physical address space.
This is particularly important because Windows places each process
in an identical linear address space.

The additional protection supplied by the page table entry
read/write flag, discussed in Chapter 1, is reflected in the Win32
API. Take a look at the call to VirtualAlloc() that was made in
a previous example:

108 Chapter 2

ptr = VirtualAlloc(NULL,nbytes,MEM_RESERVE,

PAGE_READWRITE);

The last argument is a memory access specifier. This specifier can
be one of the eight macros enumerated in Table 2.8.

Table 2.8

Macro Meaning

PAGE_READONLY Page region can only be read

PAGE_READWRITE Page region can be read and written to

PAGE_EXECUTE Page region can be executed

PAGE_EXECUTE_READ Page region can be read and executed

PAGE_EXECUTE_READWRITE Page region can be read, executed, and written to

PAGE_GUARD Access raises a STATUS_GUARD_PAGE exception

PAGE_NOACCESS Page region cannot be accessed

PAGE_NOCACHE Page region cannot be placed in the cache

Violating any of the policies causes an access violation to be gener-
ated. This usually results in the offending program being killed.

The PAGE_GUARD macro requires a little extra explanation.
This macro causes the memory region allocated to be shielded by a
one-time exception. The first time that a program tries to read or
write to a PAGE_GUARD memory region, a STATUS_GUARD_
PAGE exception is generated. The catch is that the run time will
turn off the PAGE_GUARD status of the memory region so that the
exception can only be thrown once.

Demand Paging

Windows uses the Present (P) flag in page table entries to support
demand paging. Windows also adds a twist to this mechanism by
loading a cluster of pages in an effort to reduce the number of page
faults that it handles. The size of the page cluster loaded depends on
the amount of physical memory available. Given that most machines
have at least 32MB of DRAM, page clusters will be either four or
eight pages in size.

As I mentioned earlier, disk I/O is an extremely expensive opera-
tion and should be avoided by whatever means necessary. Each page
fault translates into a read from the disk. Clustering is a clever way
to save execution time. It is like shopping at a wholesale food dis-
tributor to save trips to the grocery store.

When there are plenty of unoccupied page frames in physical
memory, the operating system will load disk-bound pages into these
frames when they are requested. However, things get a little more
complicated when there are no available page frames to spare. In

Memory Management Policies 109

C
h
a
p
te

r
2

this case, the operating system has to make a policy decision and
decide which pages in physical memory will be removed to make
way for the requested pages that are loaded from disk storage. How
does the operating system decide which pages to write to disk in
order to produce the necessary free space?

Once again, we are faced with a scenario that is like a game of
musical chairs.

There are a few standard algorithms, including first in, first out

(FIFO) and least recently used (LRU). The FIFO algorithm moves
pages to disk that have been in memory the longest. The LRU algo-
rithm is slightly more involved. The LRU algorithm takes into
account the number of times that a page in physical memory has
been modified. Those pages that have been modified the least are
written to disk.

Which algorithm does Windows use? This depends on the num-
ber of processors that Windows can access on the motherboard. If
Windows is running on top of a single processor, a variation of the
LRU algorithm is utilized. If Windows has multiple processors at its
disposal, it uses the FIFO algorithm. In both cases, the algorithms
are applied in the context of working sets. If a page is requested that
has been written to disk, Windows will look at the working set that
the page belongs to in order to determine which members of the
working set should be swapped to disk so that the requested page
can be loaded into memory.

Memory Allocation

When the kernel allocates physical memory for a process, it sets up
the allocated memory so that the first address (i.e., the lowest
address) is a multiple of 64KB. In other words, processes are
aligned in physical memory on a 64KB boundary. The size of the
address space reserved for a process is a multiple of the native pro-
cessor’s page size. On a Pentium, an application would be given a
plot of real estate in physical memory that is a multiple of 4KB. The
Pentium does provide facilities for larger page sizes (i.e., 4MB), but
everyone in their right mind sticks to 4KB page sizes (MMURTL,
Linux, Windows, etc.).

One of the fringe benefits of being a user process is that each
task is constructed with its own heap. Figure 2.22 displays one of
the possible memory layouts for a user process. The stack grows
down from the highest address, and the heap grows up toward the
stack.

110 Chapter 2

NOTE The exact organization of a program’s code, data, stack, and
heap sections are a function of the development tools used to build
the program. Linkers, in particular, can decide where to place an
application’s components. The linker will normally process object files
in the order in which they appear on its command line. For each object
file, the linker will embed program sections into the executable as it
encounters them. The /DO linker option can be used to alter this
behavior so the program’s sections are arranged in the Microsoft
Default Order.

Unlike MMURTL, which relies on user mode tool libraries, the
Windows operating system provides kernel-level services to man-
age a task’s heap. Windows exposes this functionality through a set
of Win32 functions. These user-level calls end up invoking kernel
mode code in Ntoskrnl.exe. A few of the more relevant func-
tions include GetProcessHeap(), HeapAlloc(), and
HeapFree(). The following short program demonstrates how
these routines are used.

/* --heapFun.c-- */

#include<windows.h>

#include<stdio.h>

void main()

{

HANDLE hHeap;

unsigned char *buffer;

hHeap = GetProcessHeap();

if(hHeap==NULL){ printf("No heap!\n"); exit(1); }

Memory Management Policies 111

C
h
a
p
te

r
2

Figure 2.22

buffer = HeapAlloc(hHeap,HEAP_ZERO_MEMORY,1024);

if(buffer==NULL){ printf("No heap space!\n"); exit(1);}

printf("buffer[511]=%X, buffer has been

zeroed\n",buffer[511]);

buffer[512]=0xCA;

printf("buffer[512]=%X\n",buffer[512]);

if(HeapFree(hHeap,HEAP_NO_SERIALIZE,buffer))

{

printf("have returned memory to the collective\n");

}

return;

}

When this program is run, you will see:

buffer[511]=0, buffer has been zeroed

buffer[512]=CA

have returned memory to the collective

NOTE A process in Windows can also create additional heaps in its
linear address space. The HeapCreate() function is used to this end.

NOTE There is a set of older heap management functions, like
Globalxxx() and Localxxx(). The Heapxxx() functions are meant
to replace these artifacts.

The Windows operating system also has a set of mechanisms so
that kernel mode components can allocate memory for themselves.
This includes:

� Look-aside lists

� Paged memory pool

� Non-paged (i.e., locked) memory pool

Look-aside lists are a special-purpose source of fixed-size memory
blocks. Look-aside lists are fast because the kernel does not have to
waste time searching for memory blocks of a particular size.
Look-aside lists use memory borrowed from the kernel’s paged and
non-paged pools. To take a look at the look-aside lists that the ker-
nel is using, you can use the !lookaside kernel debugger
command.

kd> !lookaside

!lookaside

Lookaside "nt!CcTwilightLookasideList" @ 80475560 "CcWk"

Type = 0000 NonPagedPool

Current Depth = 4 Max Depth = 4

Size = 16 Max Alloc = 64

112 Chapter 2

AllocateMisses = 193 FreeMisses = 185

TotalAllocates = 295 TotalFrees = 291

Hit Rate = 34% Hit Rate = 36%

Lookaside "nt!IopSmallIrpLookasideList" @ 80478d00 "Irps"

Type = 0000 NonPagedPool

Current Depth = 0 Max Depth = 4

Size = 148 Max Alloc = 592

AllocateMisses = 9 FreeMisses = 0

TotalAllocates = 9 TotalFrees = 0

Hit Rate = 0% Hit Rate = 0%

.

.

.

Total NonPaged currently allocated for above lists = 2536

Total NonPaged potential for above lists = 4048

Total Paged currently allocated for above lists = 0

Total Paged potential for above lists = 544

kd>

If you look back at Figure 2.19, you will see that the operating sys-
tem reserves significant portions of memory for the paged and
locked memory pools/heaps. These pools vary in size, but the maxi-
mum pool sizes are hard coded in the kernel’s source code. The
paged memory pool, whose storage can be written to disk, can be at
most approximately 492MB in size. The non-paged memory pool,
which is used by device drivers that require resident memory, can
be at most 256MB in size.

The kernel’s use of its memory pools can be examined with the
Poolmon.exe program that ships with the Windows Support Tools
package. But before you do, you will need to run gflags.exe
(which also ships with the support tools) and enable pool tagging.
Pool tagging allows the kernel to assign a tag to each type of data
structure being allocated and freed within the kernel. Statistics can
then be gathered for particular data structures. The Poolmon.exe
program tracks the individual allocations that are made from the
paged and non-paged memory pools. The output is character-based,
as shown in Figure 2.23.

An explanation of the columns appearing in Figure 2.23 is pro-
vided in Table 2.9.

Table 2.9

Column Meaning

Tag Identifies a particular type of data structure

Type Source of memory: paged or non-paged pool

Allocs Number of data structure allocations made

Frees Number of data structure releases made

Memory Management Policies 113

C
h
a
p
te

r
2

Column Meaning

Diff Allocs — Frees

Bytes Total number of bytes currently used by this type of data structure

Per Alloc Number of bytes used by a single data structure of this type

For an in-depth look at Poolmon.exe, I suggest you read the
w2rksupp.chm help file that accompanies the support tools kit.

Memory Usage

Memory usage can be measured on a system-wide basis or on a pro-
cess-by-process basis. System administrators tend to be concerned
with the former and developers tend to be concerned with the
latter.

The following three mechanisms can be used to track memory
usage on a system-wide basis:

� Task Manager: Performance pane

� Win32 API

� Pmon.exe

There are also a couple of tools that can be used to measure the
memory used by a process:

� Task Manager: Process pane

� Pviewer.exe

The Task Manager can be invoked by pressing the Ctrl+Alt+Del
keys simultaneously. This combination of keys is known as the

114 Chapter 2

Figure 2.23

three-finger salute. The Performance dialog and Process dialog are
really just panes within the Task Manager (see Figure 2.24).

The Mem Usage column in the Process pane specifies the physical
memory used by a process. The Kernel Memory section on the Per-
formance pane specifies the size of the paged and non-paged kernel
memory pools.

The Win32 API has a function called GlobalMemoryStatus()
that will return the current memory usage by the system. An exam-
ple of its usage is offered in the following short program.

#include<windows.h>

#include<stdio.h>

void main()

{

MEMORYSTATUS mstatus;

GlobalMemoryStatus(&mstatus);

printf("percent of memory in use =%lu\n",

mstatus.dwMemoryLoad);

printf("bytes of physical memory =%lu\n",

mstatus.dwTotalPhys);

printf("free physical memory bytes =%lu\n",

mstatus.dwAvailPhys);

printf("max. bytes in paging file =%lu\n",

mstatus.dwTotalPageFile);

printf("free bytes in paging file=%lu\n",

mstatus.dwAvailPageFile);

printf("total bytes in user space =%lu\n",

mstatus.dwTotalVirtual);

printf("free user bytes =%lu\n",mstatus.dwAvailVirtual);

Memory Management Policies 115

C
h
a
p
te

r
2

Figure 2.24

return;

}

Pmon.exe and Pviewer.exe are both tools that are bundled with
the Windows Support Tools package. Pmon.exe offers a snapshot
of the operating system and all of its processes. The output is
dynamically updated so that the statistics provided reflect the actual
state of your computer (see Figure 2.25).

Pviewer.exe is a utility that offers an extremely detailed view of
each process. To examine the memory consumption of a particular
process, select a process in the Process scroll pane and click on the
Memory Details button (see Figure 2.26).

116 Chapter 2

Figure 2.25

Figure 2.26

Turning Off Paging

Anyone who has ever read Computer Architecture: A Quantitative

Approach by Patterson and Henessey knows that there is one true
measure of performance: execution time. In light of this, disk stor-
age I/O is probably the most expensive operation that a computer
can execute (with the exception, maybe, of establishing a network
connection). This makes demand paging a very costly feature in
terms of performance. Barry Brey, an expert on the Intel chip set,
told me that paging on Windows imposes an average execution time
penalty of 10%.

NOTE The paging penalty can actually be even greater than 10%
given that most programs are currently larger than 88KB (the amount
of cached page relocations afforded by the look-aside cache in the
paging unit). Take a program that calls many functions. Each time you
access a function, there is a high probability that it will not be in the
cache. This really drags out execution time. The only short-term solu-
tion that I can think of is to inline code with macros.

If you are interested in allowing your machine to handle multiple
tasks without suffering the overhead incurred by demand paging, I
recommend you buy as much physical memory as you can afford and
turn off paging. I think that 512MB to 1GB of DRAM ought to do
the trick for most people (at least for the time being). Paging mem-
ory to disk can be turned off by opening the Control Panel and
clicking on the System icon. Select the Advanced tab and click on
the Performance Options
button. This will display
the Performance Options
dialog. Click on the
Change button in the Vir-
tual Memory section. The
Virtual Memory dialog
will appear (see Figure
2.27). This dialog will
allow you to disable the
use of disk storage for
memory.

Memory Management Policies 117

C
h
a
p
te

r
2

Figure 2.27

Example: Things That Go Thunk in the Night

Windows supports mixed memory models using a number of differ-
ent subsystems. For example, Windows has a DOS subsystem, a
Windows 3.1 subsystem, a POSIX subsystem, and an OS/2 subsys-
tem. I am about to reveal to you a nasty trick that has brought
dozens of different Intel debuggers to their knees. I am talking
about thunking, which is a mechanism that allows 16-bit and 32-bit
Windows code to interact.

There are three types of thunking techniques. They are distin-
guished based on the platforms on which they are used. Table 2.10
describes the three thunking methods.

Table 2.10

Thunk Type Platform Use

Universal Windows 3.1 16-bit code calls a 32-bit DLL running
under Win32s

Flat Windows 95/98/ME Allows 16-bit and 32-bit DLLs to call
each other

Generic Windows NT/2000/XP API that allows a 16-bit program to use
a 32-bit DLL

NOTE For those of you who were not on the scene in the early
1990s, Win32s was a special extension package that allowed 32-bit
applications to run on Windows 3.1 and Windows 3.11. It was often
bundled with development tools. I installed Win32s on my 80486 back
in 1995 as an add-on to the Borland 4.5 C++ compiler.

Universal thunking is of little use, seeing as how Windows 3.1 is, for
all intents and purposes, an extinct operating system.

Generic thunking is facilitated entirely by an API. Win32 func-
tions like LoadLibraryEx32W(), CallProc32W(), and
FreeLibrary32W() declared in WOWNT16.H allow 16-bit code to
load and invoke a 32-bit Win32 DLL. Because this mechanism is
API driven, most of the internal operation is hidden from view.

Flat thunking, however, uses a mechanism that is open to inspec-
tion, so dissecting this mechanism may offer some sort of insight.

Implementing flat thunking is a procedure that has five steps:

1. Write a thunk script.

2. Compile the thunk script with the thunk.exe compiler to
produce an .ASM file.

3. Assemble the generated .ASM file twice (to create a 16-bit and
a 32-bit .OBJ file).

4. Create a 16-bit DLL and link it with the 16-bit .OBJ file.

5. Create a 32-bit DLL and link it with the 32-bit .OBJ file.

118 Chapter 2

The really interesting piece in this puzzle is the assembly code file
that the thunk compiler generates. It is this assembly code that
allows the 16-bit and 32-bit DLLs to interact.

NOTE For those of you who have never written a DLL, I included the
source code to a 32-bit DLL called dll32.c and a small program that
uses it, called usedll32.c , in the downloadable files (www.word-
ware.com/memory). Reading this code should give you what you need
to know.

The thunk script is just a text file that spells out the type of signa-
ture of the functions that the 16- and 32-bit DLLs wish to expose to
each other. Consider the following thunk script called
script.thk:

enablemapdirect3216 = true;

typedef char *LPSTR;

typedef unsigned long ULONG;

typedef unsigned short USHORT;

ULONG function16(LPSTR cptr,USHORT n)

{

cptr=input;

}

The first line (enablemapdirect3216 = true) indicates that
we are thunking from 32-bit code to 16-bit code. In other words, the
function prototype included in the thunk script represents a 16-bit
DLL function that we wish to invoke from a 32-bit DLL.

The thunk script can be translated to assembly code using the
thunk compiler. The thunk compiler ships as a part of the Windows
ME SDK.

C:\devstudio\thunk>thunk.exe script.thk

This creates an assembly code file named script.asm.

NOTE Copies of both script.thk and script.asm are in the
downloadable files.

The assembly code in script.asm, which the 32-bit DLL will use
to call the 16-bit DLL function (i.e., function16()), looks like
this:

; dword ptr [ebp+8]: cptr

; dword ptr [ebp+12]: n

;

public IIfunction16@8

IIfunction16@8:

push ebp

Memory Management Policies 119

C
h
a
p
te

r
2

mov ebp,esp

push ecx

sub esp,60

call SMapLS_IP_EBP_8

push eax

push word ptr [ebp+12] ;n: dword->word

call dword ptr [pfnQT_Thunk_script]

shl eax,16

shrd eax,edx,16

call SUnMapLS_IP_EBP_8

leave

retn 8

You can tell that this assembly code must be called by the 32-bit
DLL because the instructions use the extended registers. For
example, EBP is used as a frame pointer instead of just BP, and ESP
is used to point to the stack instead of just SP.

Keep in mind that the 16-bit DLL is native to 16-bit Windows. A
16-bit DLL does not run in real mode. It runs in a variation of pro-
tected mode. Before we begin, you need to read the following
information carefully.

IMPORTANT! According to the MSDN documentation, a pointer in
a 16-bit Windows environment consists of a 16-bit segment selector
and a 16-bit offset (i.e., selector:offset form, or 16:16 for short).

Be careful! This is not the same as real mode, where an address is
specified by a 16-bit segment address and a 16-bit offset address (i.e.,
segment:offset form). In real mode, a segment address is speci-
fied. In 16-bit Windows, a segment selector is specified. This is the
crucial distinction.

Because an address in real mode is specified with a 16-bit segment
address and 16-bit offset address, you might be tempted to also call
this 16:16 addressing. In this discussion, however, I am using 16:16

to denote 16-bit Windows addressing. I will admit that the convention
is completely arbitrary.

A pointer in a 32-bit Windows application only consists of a 32-bit
offset because all the segment registers (CS, SS, DS, ES, etc.) contain
selectors that point to segments with the same base address. Recall
that Windows NT/2000/XP uses a variation of the flat segment model.
In other words, all the function calls in 32-bit protected mode are
NEAR.

Constructing a 16:16 Windows address from a 32-bit Windows off-
set address means that a new 16-bit selector must be allocated so that
the memory location in question can then be specified by a 16-bit
offset.

From this assembly code, we can glean a few things. The two func-
tion arguments, cptr and n, are both 4 bytes in size and have
already been pushed onto the stack. The address of the character
array is located at [ebp+8], and the length argument (i.e., n) is

120 Chapter 2

located at [ebp+12]. The return address of the invoking function
is resident at [ebp+4].

Next, the 32-bit offset address stored in cptr is mapped from
protected mode 0:32 format to the older 16:16 Windows format
via the SMapLS_IP_EBP_8 function.

call SMapLS_IP_EBP_8

This function, by the way, is located in the THUNK32.LIB library.
You can verify this using the following command:

C:\DevStudio\VC\lib>dumpbin /linkermember thunk32.lib | more

The SMapLS_IP_EBP_8 procedure in THUNK32.LIB is where
the pointer acrobatics occur that map the 32-bit offset addresses to
16-bit Windows selector:offset addresses. I was hoping that
the thunk script would reveal more details, but it seems like
Microsoft has squirreled them all away inside of library code. The
truth is out there . . . if you feel like disassembling.

The 4-byte integer argument n must be resized to a 16-bit word
because the default integer size in real mode is 2 bytes. This trans-
formation is realized in the following line of code:

push word ptr [ebp+12] ;n: dword->word

The actual real mode function16() routine is invoked when
the machine executes the following:

call dword ptr [pfnQT_Thunk_ script]

pfnQT_Thunk_script is a label in script.asm that stores the
32-bit address of the 16-bit function in memory. I assume that the 32
bytes designated by the QT_Thunk_script label are modified at
run time to produce the necessary result.

pfnQT_Thunk_script dd offset QT_Thunk_script

QT_Thunk_script label byte

db 32 dup(0cch) ;Patch space.

When the 16-bit function returns, we’ll need to convert the cptr
argument from its 16:16 format back to its original 32-bit offset
format. This accounts for the following code:

call SUnMapLS_IP_EBP_8

As you can see, Microsoft again has hidden the fine print away in
the THUNK32.DLL library. I should have known better. If you are
interested in taking the next step, you will need to crank up a
disassembler and start reverse engineering THUNK32.DLL.
Should you choose to accept this mission, I would recommend

Memory Management Policies 121

C
h
a
p
te

r
2

DataRescue’s IDA Pro interactive disassembler. It is a peach of a
tool.

Closing Thoughts

Looking at the previous three protected mode operating systems
(MMURTL, Linux, and Windows), you should notice a trend. Seg-
mentation-based protection is not utilized to its full potential in any
of the case studies. I suspect that this is because of the way that vir-
tual memory works on Intel machines. The Pentium’s paging
facilities, in addition to supporting memory expansion via disk stor-
age, also provide a degree of segmentation functionality. In fact, not
only does Intel paging support memory segmentation, but it also
does so at a much finer level of granularity. Access policies can be
instituted on a 4KB page level.

NOTE As I have mentioned several times before, operating system
code serves as a policy maker that mandates how the hardware-based
memory management tools will be used. Deciding not to use a given
mechanism at all is still a policy decision in and of itself.

If you think about it, segmentation and paging both serve to break
up a region of memory into smaller parts. Paging just partitions
memory into smaller chunks. So, in a sense, investing in an elabo-
rate segmentation scheme via GDTs and LDTs is somewhat of a
wasted effort when the same type of services can be built on an
existing service that is already being used for something else.

The trade-off to relying heavily on paging is that it only permits a
two-ring privilege model. This is a far cry from the four-ring privi-
lege scheme that segmentation hardware supports. Page directory
and page table entries have only a single bit to specify privilege.
This leaves us with a pretty limited user/supervisor implementation
of access privileges. Paging also requires more memory within the
kernel itself because the data structures that track pages of data are
more numerous. Most operating systems give each process its own
page directory, which necessarily implies a handful of page tables
and their entries. A pure segmentation scheme could potentially
only require a single entry in the GDT to delimit and manage an
application in memory.

122 Chapter 2

References

Books and Articles

Aleph One. “Smashing the Stack for Fun and Profit.” Phrack, Issue
49.

This is the groundbreaking article that put buffer overflow
attacks on the map.

Barnaby, Jack. “Win32 Buffer Overflows: Location, Exploitation, and
Prevention.” Phrack, Issue 55.

Bovet, D. and M. Cesati. Understanding the Linux Kernel: From I/O

Ports to Process Management. 2002, O’Reilly & Associates, ISBN:
0596000022.

These authors do an exceptional job of presenting a conceptual
view of how the Linux kernel operates. Generally this book
should be read before you tackle Maxwell’s.

Burgess, Richard. MMURTL V1.0. 2000, Sensory Publishing, Inc.,
ISBN: 1588530000.

There were some people in the computer subculture that sus-
pected that Richard’s book had been suppressed by the powers
that be. Thankfully, they were wrong. MMURTL is back and in
print. Burgess does a particularly nice job of explaining the hard-
ware interface.

Cesare, Silvio. “Runtime Kernel Kmem Patching.” 1998,
http://www.big.net.au/~silvio/runtime-kernel-kmem-
patching.txt.

This is the canonical article on kernel patching. Almost every
article on Linux kernel patching can be traced to this article in
one way or another.

Chebotko, Kalatchin, Kiselev, and Podvoisky. Assembly Language

Master Class. 1994, Wrox Press Inc., ISBN: 1874416346.
This book details a functional DPMI server for DOS.

halflife@infonexus.com. “Abuse of the Linux Kernel for Fun and
Profit.” Phrack, Issue 50.

This article describes the steps needed to hijack a user-TTY
via LKMs.

Hatch, B., J. Lee, and G. Kurtz. Hacking Linux Exposed. 2001,
McGraw-Hill, ISBN: 0072127732.

Hoglund, Greg. “A *REAL* NT Rootkit: Patching the NT Kernel.”
Phrack, Issue 55.

Memory Management Policies 123

C
h
a
p
te

r
2

This is an interesting article on NT kernel internals. The
author also does a nice job of setting the tone of his article.

Maxwell, Scott. Linux Core Kernel Commentary, 2nd Edition. 1999,
The Coriolis Group, ISBN: 1588801497.

This sizeable book is basically a guided tour of the source
code. Be warned; you will need several book markers to read this
text.

Palmers. “Sub proc_root Quando Sumus (Advances in Kernel
Hacking).” Phrack, Issue 58.

This article focuses on manipulating the /proc file system
using LKMs. The Latin title is fun too; there is nothing like a
Pythonesque sense of humor. (Wink, wink, nudge, nudge.)

Patterson, D. and J. Hennessy. Computer Architecture: A Quantita-

tive Approach. 1996, Morgan Kaufmann Publishers, ISBN:
1558603298.

Every hardware engineer I know has a copy of this book, and
with good reason. This book provides a universally effective
approach for analyzing processor performance.

Ray, J. and Anonymous. Maximum Linux Security. 2001, Sams,
ISBN: 0672321343.

Schreiber, Sven. Undocumented Windows 2000 Secrets: A Program-

mer’s Cookbook. 2001, Addison-Wesley, ISBN: 0201721872.
The title of this book is well deserved. This is an engrossing

exploration of the Windows 2000 operating system by an author
who knows what he’s doing. Sven covers a lot more ground than
I had space to. He also provides a number of handy tools. If you
are hungry to find out more about Window’s internals, get a copy
of this book.

SD and Devik. “Linux on-the-fly kernel patching without LKM.”
Phrack, Issue 58.

This article is concerned with manipulating /dev/kmem. The
bad news is that they assume that the reader has already attained
root status.

Solomon, D. and M. Russinovich. Inside Microsoft Windows 2000.
2000, Microsoft Press, ISBN: 0735610215.

This book gives a detailed overview of Windows 2000. Unfor-
tunately, there is no source code included. This is like trying to
admire a painting blindfolded while listening to someone describe
it to you. You can’t extract any sort of concrete insight. This book
does have a rare photo of Bruce Cutler.

124 Chapter 2

Toxen, Bob. Real World Linux Security: Intrusion Prevention, Detec-

tion and Recovery. 2000, Prentice Hall, ISBN: 0130281875.

Villani, Pat. FreeDOS Kernel; An MS-DOS Emulator for Platform In-

dependence and Embedded Systems Development. 1996, CMP
Books, ISBN: 0879304367.

If you want to understand how DOS works without using a
disassembler, this is a useful book. FreeDOS is a DOS clone. It’s
a good first step for readers who are not ready to jump into pro-
tected mode.

Web Sites

http://www.cs.vu.nl/~ast/minix.html
(the home page for MINIX)

http://www.delorie.com/djgpp
DJGPP is the Win32 version of GCC. This distribution offers a
DPMI host called cwsdpmi.exe.

http://www.dunfield.com/downloads.htm
The MICRO-C compiler can be obtained from this site.

http://www.kernel.org
This site offers the most recent Linux kernel source code.

http://www.linux.org
This is one of the more popular Linux portals.

http://www.microsoft.com/
Microsoft provides a number of tool kits that can be down-

loaded for free.

http://www.phrack.com
Before there was hacking, there was phone phraking. This

e-zine came into being when guys like John Draper were explor-
ing the telecom systems. Phrack is one of the oldest and most
respected underground zines in distribution. I found more than a
few interesting articles at this site.

http://www.securityfocus.com
This is an excellent site for getting information on recent soft-

ware exploits. Bugtraq is particularly useful.

http://standards.ieee.org
If you have a couple hundred dollars to spare, you can pur-

chase the POSIX specification at this site.

Memory Management Policies 125

C
h
a
p
te

r
2

http://www.tenberry.com/web/dpmi/toc.htm
The DPMI spec is available at this web site, as is the

renowned DOS/4G DOS extender.

http://www.vci.com/products/pharlap.asp
The Phar Lap corporate name is still alive. Believe it or not,

they are still selling a DOS extender.

126 Chapter 2

Chapter 3

High-Level Services

“My problem is that I have been persecuted by an integer.”
— George A. Miller

View from 10,000 Feet

A computer’s memory management subsystem can be likened to a
house. The foundation and plumbing are provided by the hardware.
It is always there, doing its job behind the scenes; you just take it
for granted until something breaks. The frame of the house is sup-
plied by the operating system. The operating system is built upon
the foundation and gives the house its form and defines its function-
ality. A well-built frame can make the difference between a shack
and a mansion.

It would be possible to stop with the operating system’s memory
management facilities. However, this would be like a house that has
no furniture or appliances. It would be a pretty austere place to live
in. You would have to sleep on the floor and use the bathroom out-
side. User space libraries and tools are what furnish the operating
system with amenities that make it easier for applications to use
and execute within memory. High-level services like these are what
add utility to the house and give it resale value (see Figure 3.1 on
the following page).

There are two ways that user applications can allocate memory:
compiler-based allocation and heap allocation.

We will spend this chapter analyzing both of these techniques.
The first approach is supported, to various degrees, by the devel-

opment environment that is being used. Not all compilers, and the
languages they translate, are equal. You will see a graphic demon-
stration of this later on in the chapter.

127

The second approach is normally implemented through library
calls (i.e., like malloc() and free()) or by a resident virtual
machine. Using this technique to implement memory management
provides a way for storage allocation facilities to be decoupled from
the development tools. For example, there are several different
implementations of malloc() that can be used with the gcc com-
piler. Some engineers even specialize in optimizing malloc() and
offer their own high-performance malloc.tar.gz packages as a
drop-in replacement for the standard implementation.

In order to help illustrate these two approaches, I will look at
several development environments. This will give you the opportu-
nity to see how different tools and libraries provide high-level
services to user applications. We will be given the luxury of forget-
ting about the hardware details and be able to look at memory from
a more abstract vantage point. I will begin by looking at relatively
simple languages, like COBOL, and then move on to more sophisti-
cated languages, like C and Java.

NOTE Some people prefer to classify memory allocation techniques
in terms of whether they are static or dynamic. Static memory is mem-
ory that is reserved from the moment a program starts until the
program exits. Static memory storage cannot change size. Its use and
position relative to other application components is typically deter-
mined when the source code for the application is compiled.

Dynamic memory is memory that is requested and managed while
the program is running. Dynamic memory parameters cannot be spec-
ified when a program is compiled because the size and life span
factors are not known until run time.

While dynamic memory may allow greater flexibility, using static
memory allows an application to execute faster because it doesn’t
have to perform any extraneous bookkeeping at runtime. In a produc-
tion environment that supports a large number of applications, using

128 Chapter 3

Figure 3.1

static memory is also sometimes preferable because it allows the sys-
tem administrators to implement a form of load balancing. If you know
that a certain application has a footprint in memory of exactly 2MB,
then you know how many servers you will need to provide 300
instances of the application.

I think that the static-versus-dynamic scheme makes it more compli-
cated to categorize hybrid memory constructs like the stack. This is why
I am sticking to a compiler-versus-heap taxonomy.

Compiler-Based Allocation

User applications typically have their address space divided into
four types of regions:

� Code section

� Data section

� Stack

� Heap

An application may have more than one section of a particular type
(see Figure 3.2). For example, an application may have multiple
code sections and stacks.

Sometimes an application may have only a single section that is a
hybrid of different types (see Figure 3.3). For example, DOS .COM
executables, loaded into memory, consist of a single section. Data,
as long as it is not executed, can be interspersed with code. The
stack pointer register (SP) is set to the end of the executable’s
image so that the last few bytes serve as an informal stack.

High-Level Services 129

C
h
a
p
te

r
3

Figure 3.2

A .COM file has no official boundaries. If the stack overflows into
the heap, or if the program is so large that the stack spills into the
code, then you are out of luck. Here is a small .COM file program so
that you can see what I am talking about:

; --smallCom.asm--

.386

mycode SEGMENT USE16

ASSUME CS:mycode,DS:mycode,SS:mycode,ES:mycode

ORG 100H

;code region----------------------------------

entry:

PUSH DS

MOV AH,0H

PUSH AX

MOV [oldstack],SP

MOV SP,OFFSET stktop

MOV AX,OFFSET string1

PUSH AX

CALL printStr

MOV AX,OFFSET string2

PUSH AX

CALL printStr

MOV SP,[oldstack]

RETF

;data region----------------------------------

oldstack DW ?

130 Chapter 3

Figure 3.3

string1 DB "the hot side stays hot--"

end1 DB '$'

string2 DB "the cool side stays cool"

end2 DB '$'

;stack region---------------------------------

stkbody DB 31 dup ('01')

stktop DB 01H

;code region----------------------------------

printStr:

PUSH BP

MOV BP,SP

MOV AH,09H

MOV DX,[BP+4]

INT 21H

POP BP

RET

mycode ENDS

END entry

Here is the build command with MASM: C:\MASM\SRC> ML /AT

smallCom.asm

When you run this application, the following message is printed
to the screen:

C:\MASM\SRC>smallCom

the hot side stays hot--the cool side stays cool

As you can see, I have placed data, not to mention a whole entire
stack, dead in the middle of executable code. There are really very
few rules in the case of a .COM binary. Most current executable for-
mats, like the ELF file format or the PE file format, have more
strict and established rules with regard to program section
arrangement.

NOTE Regardless of how many or what type of sections a program
has, the general rule is that the stack grows down from a high address
and the heap grows up from a low address.

QUESTION
What does all of this memory partitioning have to do with

development tools?

ANSWER
A compiler is a development tool that acts as a translator. It

consumes human-readable source code, moves the source
through its compound digestive track, and then emits native
machine instructions (or some other type of bytecode). A

High-Level Services 131

C
h
a
p
te

r
3

compiler also determines how the emitted binary values will be
organized to provide the four types of memory sections described
previously. In general, compilers control how memory is arranged,

allocated, accessed, and updated in every section, except the heap.
Managing the heap is the domain of user libraries and virtual
machines.

Data Section

The data section of an application traditionally supplies what is
known as static memory. As I mentioned earlier, static memory
regions are fixed in size and exist for the duration of an application’s
life span.

Given these two characteristics, most compilers will construct
data sections to serve as storage for global data. For example, con-
sider the following C program:

#include<string.h>

struct employee

{

char firstname[32];

char lastname[32];

unsigned char age;

unsigned int salary;

};

struct employee architect = {"Gil","Bates",45,100000};

struct employee ceo = {"Reed","Almer",42,95000};

struct employee drone;

void main()

{

strcpy(drone.firstname,"bill");

strcpy(drone.lastname,"blunden");

drone.age=35;

drone.salary=(int)(3.5);

return;

}

If we look at a listing file, it is clear that the global variables above
have been isolated in their own reserved program section called
_DATA. This section will have a fixed size and exist from the time
the program starts until the time that it exits.

.386P

.model FLAT

PUBLIC _architect

PUBLIC _ceo

132 Chapter 3

_DATA SEGMENT

COMM _drone:BYTE:048H

_architect DB 'Gil', 00H

ORG $+28

DB 'Bates', 00H

ORG $+26

DB 02dH

ORG $+3

DD 0186a0H

_ceo DB 'Reed', 00H

ORG $+27

DB 'Almer', 00H

ORG $+26

DB 02aH

ORG $+3

DD 017318H

_DATA ENDS

PUBLIC _main

EXTRN _strcpy:NEAR

_DATA SEGMENT

$SG117 DB 'bill', 00H

ORG $+3

$SG118 DB 'blunden', 00H

_DATA ENDS

_TEXT SEGMENT

_main PROC NEAR

; 16 : {

push ebp

mov ebp, esp

; 17 : strcpy(drone.firstname,"bill");

push OFFSET FLAT:$SG117

push OFFSET FLAT:_drone

call _strcpy

add esp, 8

; 18 : strcpy(drone.lastname,"blunden");

push OFFSET FLAT:$SG118

push OFFSET FLAT:_drone+32

call _strcpy

add esp, 8

; 19 : drone.age=35;

mov BYTE PTR _drone+64, 35 ; 00000023H

; 20 : drone.salary=(int)(3.5);

High-Level Services 133

C
h
a
p
te

r
3

mov DWORD PTR _drone+68, 3

; 21 : return;

; 22 : }

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

NOTE Microsoft has introduced a little bit of confusing nomencla-
ture in the previous assembly code. Microsoft assembly code refers to
its application’s sections as “segments” (i.e., _TEXT SEGMENT), but it is
not the same thing as the memory segments described in the operat-
ing system’s GDT. I have intentionally called these logical divisions of
application memory “sections” to keep you from getting confused. If
anything, Microsoft is using the term “segment” as a holdover from
DOS, where addresses were specified with a segment and offset
address.

The data section has a long and venerable history as the second old-
est type of application memory section. In the old days, programs
were just code and a fixed clump of static storage. The sysop was
the only person with a console, punch cards were considered
high-tech, and a top-of-the-line Dietzgen-Tyler Multilog slide rule
with enamel finish cost $35.

Code Section

At the end of the day, an application’s various sections are just bytes
in memory. So in some special cases, you can get away with using a
code section for data storage. In other words, it is possible to turn a
code section into a data section. The magic rule to keep in mind is:
It is data as long as you don’t execute it. Here is an example:

/* --codedata.c-- */

#include<stdio.h>

void code()

{

/*

on Intel, each instruction is 4 bytes:

encoded as 0x66 0xb8 0x07 0x00

*/

_asm MOV AX,0x07

_asm MOV AX,0x07

_asm MOV AX,0x07

_asm MOV AX,0x07

134 Chapter 3

/* 16 bytes total */

return;

}

void main()

{

char *cptr;

short reg;

code();

_asm MOV reg,AX

printf("reg=%d\n",reg);

cptr = (char*)code;

cptr[0]='d'; cptr[1]='a';cptr[2]='t';cptr[3]='a';

cptr[4]=(char)0;

printf("cptr[]=%s\n",cptr);

return;

}

This can be built as a 16-bit DOS app with Turbo C++.

C:\TCC\codeData>TCC -ms codedata.c

The output you will get will look like this:

C:\TCC\codeData>codedata

reg=7

cptr[]=data

Before you rush out and try to write your own self-modifying app, I
think you should know something: In the first chapter, I demon-
strated how segments and pages can be marked as read-only,
read-write, execute-only, etc. Some operating systems designate
the pages belonging to code sections as execute-only, so you cannot
always use the previously described trick because the memory in
question cannot be read or modified. The above application worked
fine running under DOS 6.22 because DOS has absolutely no mem-
ory protection.

If you try to run the previous application on Windows via Visual
Studio as a Win32 console application, the operating system will
stop you in your tracks and present you with a dialog box like the
one shown in Figure 3.4.

High-Level Services 135

C
h
a
p
te

r
3

Figure 3.4

Stack

A stack is a sequence of bytes in memory that act like a
first-in-last-out (FILO) data structure. Computer stacks typically
“grow down.” Each stack has a stack pointer (i.e., SP in Figure 3.5)
that stores the lowest address of the last item allocated on the
stack. When a new item is added to the stack, the stack pointer is
decremented to point to that item’s first byte.

There are two basic ways to manipulate a stack so memory can be
allocated and freed: PUSH/POP instructions and integer arithmetic.

Every machine instruction set has a set of PUSH and POP
instructions. The PUSH instruction causes the stack pointer to be
decremented. The space created by this operation will be populated
by the PUSH instruction’s operand. The stack pointer will always
point to the first byte of the data item on the top of the stack.

The POP instruction causes the stack pointer to be incremented.
The storage reclaimed has its data stored in the POP instruction’s
operand. The PUSH and POP operations are displayed in Figure 3.6
to give you a better idea of how they function.

NOTE In Figure 3.6, I am assuming that I’m dealing with a native
host that is little endian. Little endian architectures store the low-order
bytes of a value in lower memory. For example, a value like
0x1A2B3C4D in memory would store 0x4D at byte (n), 0x3C at byte
(n+1), 0x2B at byte (n+2), and 0x1A at byte (n+3).

address n n+1 n+2 n+3
byte 0x4D 0x3C 0x2B 0x1A

A big endian architecture stores the high-order bytes of a value in low
memory:

address n n+1 n+2 n+3
byte 0x1A 0x2B 0x3C 0x4D

136 Chapter 3

Figure 3.5

With manual stack pointer manipulation via direct arithmetic, stor-
ing and retrieving data is not as automated. Adding or subtracting
values from the stack pointer does effectively change where SP
points, and this is a very fast way to allocate and free large amounts
of storage on the stack. However, transferring data to and from the
stack must be done manually. This is illustrated in Figure 3.7.

The stack is a kind of temporary scratch pad that applications can
use to keep track of short-lived values. The stack is particularly
useful for operations that must be done and then undone. Thus, it is
a good way to store and then reclaim temporary data. What distin-
guishes the stack from a free-for-all storage region, like the heap, is
that there are rules that enforce a certain degree of regularity. In
other words, the stack is predictable and the heap is chaotic. With
the stack, you pretty much always know where the next chunk of

High-Level Services 137

C
h
a
p
te

r
3

Figure 3.6

Figure 3.7

memory will start, regardless of how big or small the data item to be
allocated is.

The stack, though it might seem simple, is an extremely power-
ful concept when applied correctly. Stacks are used to implement
high-level features like recursion and variable scope. Some garbage
collectors use them as an alternative to a heap for more efficient
allocation.

Activation Records

If you wanted to, you could use registers to pass parameter informa-
tion to a function. However, using registers to pass parameters does
not support recursion. Using the stack is a more flexible and power-
ful technique. Managing the stack to facilitate a function call is the
responsibility of both the procedure that is invoking the function
and the function being invoked. Both entities must work together in
order to pass information back and forth on the stack. I will start
with the responsibilities that belong to the invoking function.

The following steps can be used to invoke a procedure and pass it
arguments:

1. Push the current function’s state onto the stack.

2. Push the return value onto the stack.

3. Push function arguments onto the stack.

4. Push the return address onto the stack.

5. Jump to the location of the procedure.

Using Intel’s CALL instruction will typically take care of the last two
steps automatically. The function being invoked must also take a few
steps to ensure that it can access the parameters passed to it and
create local storage:

1. Push EBP on to the stack (to save its value).

2. Copy the current ESP value into EBP.

3. Decrement ESP to allocate local storage.

4. Execute the function’s instructions.

The code that performs these four steps is known as the invoked
function’s prologue.

The result of all this stack manipulation is that we end up with a
stack arrangement similar to that displayed in Figure 3.8.

The region of the stack used to store a function’s parameters and
local storage is referred to as the activation record because every
time a procedure is activated (i.e., invoked), this information must
be specified. An activation record is also known as a stack frame.

138 Chapter 3

The stack region displayed in Figure 3.8 is an example of an activa-
tion record.

NOTE On Intel machines, the EBP register is pushed on the stack so
that it can serve as a reference point. EBP is known as the stack frame

pointer, and it is used so that elements in the activation record can be
referenced via indirect addressing (i.e., MOV AX,[EBP+5]).

NOTE The arrangement of elements in the activation record does
not necessarily have to follow the conventions that I adhere to in this
section. Different languages and compilers will use different ordering
for items in the activation record.

When the function has done its thing and is ready to return, it must
perform the following stack maintenance steps:

1. Reclaim local storage.

2. Pop EBP off the stack.

3. Pop the return address off the stack.

4. Jump to the return address.

The Intel RET instruction will usually take care of the last two
steps.

The code that performs the previous four steps is known as the
invoked function’s epilogue.

Once the invoked function has returned, the invoking function
will need to take the following steps to get its hands on the return
value and clean up the stack:

1. Pop the function arguments off the stack.

2. Pop the return value off the stack.

3. Pop the saved program state off the stack.

High-Level Services 139

C
h
a
p
te

r
3

Figure 3.8

Another way to handle the arguments is to simply increment the
stack pointer. We really have no use for the function arguments
once the invoked function has returned, so this is a cleaner and
more efficient way to reclaim the corresponding stack space.

This whole process can be seen in terms of four compound steps:

1. Invoking function sets up stack

2. Function invoked sets up EBP and local storage (prologue)

-----called function executes-----

3. Function invoked frees local storage and restores EBP
(epilogue)

4. Invoking function extracts return value and cleans up stack

Here is a simple example to illustrate all of the previous points.
Consider the following C code:

/* ---stkfram.c--- */

unsigned char array[] = {1,2,3,4,5};

unsigned short sigma(unsigned char *cptr,int n)

{

int i;

int sum;

sum= 0;

for(i=0;i<n;i++){ sum = sum+ cptr[i]; }

return(sum);

}

void main()

{

int retval;

retval = sigma(array,5);

return;

}

If we look at a listing file, we can see how activation records are uti-
lized in practice:

.386P

.model FLAT

PUBLIC _array

_DATA SEGMENT

_array DB 01H

DB 02H

DB 03H

DB 04H

DB 05H

_DATA ENDS

PUBLIC _sigma

140 Chapter 3

_TEXT SEGMENT

_cptr$ = 8

_n$ = 12

_i$ = -8

_sum$ = -4

_sigma PROC NEAR

; 7 : {

push ebp

mov ebp, esp

sub esp, 8

; 8 : int i;

; 9 : int sum;

; 10 :

; 11 : sum= 0;

mov DWORD PTR _sum$[ebp], 0

; 12 : for(i=0;i<n;i++){ sum = sum+ cptr[i]; }

mov DWORD PTR _i$[ebp], 0

jmp SHORT $L31

$L32:

mov eax, DWORD PTR _i$[ebp]

add eax, 1

mov DWORD PTR _i$[ebp], eax

$L31:

mov ecx, DWORD PTR _i$[ebp]

cmp ecx, DWORD PTR _n$[ebp]

jge SHORT $L33

mov edx, DWORD PTR _cptr$[ebp]

add edx, DWORD PTR _i$[ebp]

xor eax, eax

mov al, BYTE PTR [edx]

mov ecx, DWORD PTR _sum$[ebp]

add ecx, eax

mov DWORD PTR _sum$[ebp], ecx

jmp SHORT $L32

$L33:

; 13 : return(sum);

mov ax, WORD PTR _sum$[ebp]

; 14 : }

mov esp, ebp

pop ebp

ret 0

_sigma ENDP

High-Level Services 141

C
h
a
p
te

r
3

_TEXT ENDS

PUBLIC _main

_TEXT SEGMENT

_retval$ = -4

_main PROC NEAR

; 17 : {

push ebp

mov ebp, esp

push ecx

; 18 : int retval;

; 19 :

; 20 : retval = sigma(array,5);

push 5

push OFFSET FLAT:_array

call _sigma

add esp, 8

and eax, 65535 ; 0000ffffH

mov DWORD PTR _retval$[ebp], eax

; 21 :

; 22 : //printf("retval=%d\n",retval);

; 23 : return;

; 24 : }

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

OK, let us look at each step as it occurs to understand what the
compiler is doing. The first important thing that happens is the call
to sigma(). The invoking function, main(), has to set up its por-
tion of the activation record:

; 20 : retval = sigma(array,5);

push 5

push OFFSET FLAT:_array

call _sigma

The invoking function pushes on the arguments. The CALL instruc-
tion automatically pushes a return address onto the stack. What
about the return value?As it turns out, the compiler is smart
enough to realize that recursion does not exist and uses the EAX
register to pass a return value back to main().

142 Chapter 3

Once execution has reached sigma(), the sigma function sets
up the bottom part of the stack frame:

push ebp

mov ebp, esp

sub esp, 8

The index variable i requires 4 bytes and the integer variable sum
requires 4 bytes. This accounts for the 8 bytes of local storage allo-
cated by the prologue of sigma().

The activation record produced in this example resembles the
one detailed in Figure 3.9.

Once sigma() has calculated its sum, it places the return value in
EAX and cleans out the local storage. The RET instruction automati-
cally pops the return address off the stack.

; 13 : return(sum);

mov ax, WORD PTR _sum$[ebp]

; 14 : }

mov esp, ebp

pop ebp

ret 0

When main() has things back under its control, it cleans up the
arguments placed on the stack and extracts the return value from
EAX:

call _sigma

add esp, 8

High-Level Services 143

C
h
a
p
te

r
3

Figure 3.9

and eax, 65535 ; 0000ffffH

You should be able to appreciate the amount of bookkeeping done by
the compiler to compute the size of each activation record and the
location of each element in them. These calculations are all per-
formed at compile time while the source code is being processed.
You should also keep in mind that some compilers have very intelli-
gent optimizers that will take advantage of certain circumstances
(for example, by doing sneaky things like using registers to return
values).

Scope

The scope of a program element (a variable declaration, a function,
etc.) determines both the visibility and, potentially, the life span of
the element. When a program element is visible, it can be accessed
and manipulated. The life span of a program element determines
when the element is created and destroyed.

The one caveat to this rule is for program elements that have
their storage space allocated off the heap, dynamically, during exe-
cution. In this case, scope only defines the visibility of the program
element. The element will exist until it is reclaimed, which may or
may not be related to the scope of the element.

To explore the meaning of scope, let us examine how scope rules
apply to variables in the C programming language. Scope rules in C
are implemented through the use of code blocks. A block of code is a
region of source code that lies between a pair of brackets (i.e.,
between a “{” and a “}”). A function definition is an example of a
block of code.

void myfunction()

{

block of code

return;

}

In fact, functions are actually at the top of the block hierarchy in C.
Functions may contain other blocks of code, as long as the blocks of
code are not function definitions (which is to say that function defi-
nitions cannot be nested in C). For example, the following function
definition contains a few sub-blocks:

void myfunction()

{

int i;

for(i=0;i<10;i++)

{

144 Chapter 3

if((i%2)==0)

{

printf("%d is even\n",i);

}

}

{

int j=10;

printf("j=%d\n",j);

}

return;

}

From the previous function definition, we can see that blocks of
code may be nested. In addition, although blocks of code are usually
associated with program control statements, it is possible for blocks
of code to exist independently of a program control statement. For
example, the code that prints out the value of “j” is a stand-alone
block.

Even though functions may contain other blocks of code, blocks
of code (that are not function definitions) cannot independently exist
outside of a function definition. For example, you would never see:

void myfunction1()

{

block of code

return;

}

int i;

for(i=0;i<10;i++){ printf("%d\n",i); }

void myfunction2()

{

block of code

return;

}

An ANSI C compiler processing the previous code would protest
that the for loop does not belong to a function and would refuse to
compile the code.

The scope of variables in C is block based. A variable declared
inside of a block of code is known as a local variable. A local variable
is visible in the block in which it is declared and all the sub-blocks
within that block. A variable cannot be accessed outside of the block
in which it was declared. For example, the following snippet of C
code is completely legal:

void main()

{

High-Level Services 145

C
h
a
p
te

r
3

int i;

for(i=0;i<10;i++)

{

int j=i*i;

printf("i=%d, i^2=%d\n",i,j);

}

return;

}

The following snippet of C code, however, is illegal:

void main()

{

int i;

for(i=0;i<10;i++)

{

int j=i*i;

printf("i=%d, i^2=%d\n",i,j);

}

printf("i=%d, i^2=%d\n",i,j);

return;

}

In the first case, we are perfectly within the syntactical rules of C
when the variable “i” is accessed in a sub-block. In the second
case, however, if we try to access the variable “j” outside of its
declaring block, the compiler will emit an error. Naturally, there are
two special cases to this rule: global variables and the formal param-
eters of a function.

A global variable is a variable defined outside of any block of code.
As such, a global variable is visible throughout a program by every
section of code. Global variables also exist for the duration of a pro-
gram’s execution path.

Formal parameters are the variables specified in the prototype of
a function. They are the variables that receive the arguments
passed to a function when it is invoked. Formal parameters have
visibility and a life span that is limited to the body of the function
they belong to.

Two basic techniques exist with regard to managing scope within
the body of a procedure: the all-at-once approach and additional
stack frames.

One way to manage scope is to allocate storage for all of a func-
tion’s local variables in the prologue code. In other words, we use
the function’s activation record to provide storage for every local
variable defined inside of the function, regardless of where it is
used. To support this approach, a compiler will use its symbol table
to make sure that a local variable is not accessed outside of its
declaring block.

146 Chapter 3

Here is an example to help illustrate this:

/* ---localvars.c--- */

void main(int argc, char *argv[])

{

unsigned char arr1[20];

unsigned long int i;

arr1[0]='a';

i=argc;

if(i<4)

{

unsigned char arr2[7];

unsigned long int j;

unsigned long int k;

arr2[0]='b';

j=5;

k=6;

}

else

{

unsigned char arr3[17];

arr3[0]='c';

}

}

By looking at its assembly code equivalent, we can see how storage
for all these variables was allocated:

.386P

.model FLAT

PUBLIC _main

_TEXT SEGMENT

_argc$ = 8

_arr1$ = -24

_i$ = -4

_arr2$31 = -40

_j$32 = -28

_k$33 = -32

_arr3$35 = -60

_main PROC NEAR

; Line 4

push ebp

mov ebp, esp

sub esp, 60 ; 0000003cH

; Line 8

mov BYTE PTR _arr1$[ebp], 97 ; 00000061H

; Line 9

mov eax, DWORD PTR _argc$[ebp]

High-Level Services 147

C
h
a
p
te

r
3

mov DWORD PTR _i$[ebp], eax

; Line 11

cmp DWORD PTR _i$[ebp], 4

jae SHORT $L30

; Line 16

mov BYTE PTR _arr2$31[ebp], 98 ; 00000062H

; Line 17

mov DWORD PTR _j$32[ebp], 5

; Line 18

mov DWORD PTR _k$33[ebp], 6

; Line 20

jmp SHORT $L34

$L30:

; Line 23

mov BYTE PTR _arr3$35[ebp], 99 ; 00000063H

$L34:

; Line 25

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

The compiler places all of the local variables, even the ones that
may not be used, on the procedure’s activation record. We end up
with an activation record like the one in Figure 3.10. Notice how the
compiler pads entries so that they always begin on an address that
is a multiple of 4 bytes. This is particularly true for the arr2[] and
arr3[] arrays.

148 Chapter 3

Figure 3.10

The alternative to the all-at-once approach is to give each sub-block
its own private activation record. In the “Activation Records” sec-
tion, we saw how procedure-based scope was implemented. By
using the stack, we were able to create storage that had a scope and
life span limited to the function. By using this same type of tech-
nique on a smaller scale, we can implement visibility and life span
on a block-by-block basis.

NOTE In a way, stacks are really about storage life span. Visibility
restrictions follow naturally as a result of life span constraints. Recall
that stacks are good for situations in which you need to do, and then
undo, an operation. This makes them perfect for creating temporary
storage. The limited visibility is more of a side effect of the limited life
span. Once a variable has been popped off the stack, it is gone and
any reference to it can yield garbage.

The easiest way to think of a block of code is like a stripped-down
type of function that has no return value and no return address. It
only has local variables. Table 3.1 presents a basic comparison of
functions and code blocks.

Table 3.1

Saved
State

Return
Value

Arguments Return
Address

Variables

Function yes yes yes yes yes

Sub-block yes no yes no yes

As you can see from the table, a code block has saved program state
information and local variables in its stack frame. Local variables
declared outside the block but accessed inside the block can be
treated as arguments. Figure 3.11 displays a comparison of the stack
frames used by a function and a code block.

High-Level Services 149

C
h
a
p
te

r
3

Figure 3.11

QUESTION
What are the trade-offs between the all-at-once approach and

the additional stack frame approach?

ANSWER
The extra stack frame technique requires that stack manipula-

tion be performed every time a block is entered or exited. If a
section of code has a heavily nested set of blocks, this translates
into a lot of extra push and pop operations. This means the extra
stack frame tactic will create an executable that is larger and
slower because more instructions will need to be executed.

Another downside of using the all-at-once tactic is that it re-
quires a lot of storage overhead. Space in the activation record
will be reserved even if a variable is not used. If a function has
several different possible execution paths, a lot of storage is
wasted.

Table 3.2 summarizes a comparison of these two techniques.

Table 3.2

All-at-once Allocation Extra Stack Frames

Speed faster slower

Stack memory
usage

more less

Executable size smaller larger

In the final analysis, real estate on the stack is relatively
cheap compared to execution speed, which is why most com-
pilers opt for the all-at-once approach.

Static or Dynamic?

The stack is a hybrid between a purely static and a purely dynamic
form of storage. It is not purely static because the amount of occu-
pied storage on a stack varies with each function call. Each time a
function is invoked, a new activation record is pushed on to the
stack. When a function returns, its activation record vanishes and all
of its associated data goes out of scope.

However, the way in which stack storage is allocated and freed
obeys a strict first-in-last-out (FILO) policy. In addition, the regions
of storage consumed on a stack are almost completely dictated by
the compiler. In a structured language like C, the stack is populated
with nothing but activation records, and the size of each activation
record is fixed at compile time. Thus, there is a lot more regularity
with a stack than there is with a dynamic storage mechanism like a
heap. The stack, as I have said before, is a predictable creature. In

150 Chapter 3

addition, because of the presence of a stack pointer, you always
know where your next byte will be allocated or released from.

Because of its close connection to the machine instructions emit-
ted by the compiler in terms of prologue and epilogue code, I like to
think of the stack as being a memory component whose utilization
is tied to the development tools being used. This is why I included a
discussion of the stack in this section of the chapter.

Heap Allocation

Heap memory allocation, also known as dynamic memory allocation

(DMA), consists of requesting memory while an application is run-
ning from a repository known as the heap. A heap is just a collection
of available bytes (i.e., a bunch of bytes piled into a heap). Unlike
the data segment or the stack, the size and life span of memory allo-
cated from the heap is completely unpredictable. This requires the
agent that manages the heap to be flexible, and this, in turn, trans-
lates into a lot of extra memory management code.

The data segment requires no special management code, and
stack management is limited primarily to the prologue and epilogue
code of functions. The heap, however, normally has its own dedi-
cated set of elaborate routines to service memory requests.

Table 3.3

Storage Size Life Span Bookkeeping

data section fixed program life span none

stack fixed size stack frames function-based all at compile time

heap varies varies significant at run time

The heap relies heavily on user mode libraries. These libraries (like
malloc() and free() declared in stdlib.h) may be invoked
directly by programs or called indirectly by a virtual machine. Either
way, these libraries normally end up utilizing facilities provided by
the underlying operating system. Thus, before we dive straight into
managing memory through user libraries, it would help to under-
stand how they communicate with the operating system.

System Call Interface

Most user applications are blissfully unaware of what really goes on
to support their execution. They never see the GDT or the page
table entries. User applications are strictly memory consumers. Like
a pizza-hungry college freshman, applications ask for memory
takeout, and the operating system gives it to them; they don’t care

High-Level Services 151

C
h
a
p
te

r
3

about the details. User programs have a perspective that is roughly
10,000 feet above the operating system level. At this altitude, the
system call interface is all that user-space code sees.

In his book on MINIX, Operating Systems: Design and Implemen-

tation, Tanenbaum asserts that the system call interface is what
defines an operating system. I would tend to agree with him. The
system call interface of an operating system is a set of function pro-
totypes that completely specify every service that the operating
system can provide to the outside world. An operating system is
nothing more than the implementation of its system calls. If you
were a human resources professional, you would view the system
call interface as the kernel’s formal job description. It dictates the
actions that the operating system must be able to perform.

Let us look at a simple example. Take, for instance, the NACHOS
operating system. NACHOS was developed by Tom Anderson at
Berkeley for instructional use in computer science courses. Its sys-
tem call interface consists of just 11 routines.

Process Management

void Halt()

void Exit(int status)

SpaceId Exec(char *name)

int Join(SpaceId id)

File Input/Output

void Create(cha *name)

OpenFileId Open(char *name)

void Write(char *buffer, int size, OpenFileId id)

int Read(char *buffer, int size, OpenFileId id)

void Close(OpenFileId id)

Threads

void Fork(void (*func)())

void Yield()

That is it. Everything that NACHOS is capable of doing is described
by the previous 11 functions. Naturally, production grade operating
systems have a system call interface that is much larger. Linux, for
example, has more than 200 routines defined in its system call
interface. You can read descriptions of these 200+ system calls in
the Linux man pages (i.e., man2).

NOTE In case you are wondering, NACHOS stands for Not Another
Completely Heuristic Operating System. I think Richard Burgess is cor-
rect; we are running out of good acronyms.

152 Chapter 3

System calls are not always spelled out with tidy C prototypes.
Some operating systems, like DOS, have a system call interface that
is specified strictly in terms of interrupts. Consider the following
DOS system call:

Interrupt: 0x21 (i.e., INT 0x21)

Function: 0x09

Description: prints a string terminated by a $

Inputs: AH = 9

DS = segment address of string

DX = offset address of string

A wise system engineer will attempt to ward off complexity by ban-
ishing the system-related assembly code to the basement of the OS.
There, in the darkness, only a trained plumber with a flashlight can
muck around with the pipes. Even then, an experienced developer
will attempt to wrap the assembly code in C/C++ to make it more
palatable. Tanenbaum, for instance, did an excellent job of wrapping
assembly routines when he implemented MINIX.

NOTE I had the opportunity to speak with an engineer who helped
manage the construction of the original OS/2 platform. He told me
that around 20% of the kernel code was assembler. This is a lot of
assembler, especially when you consider that UNIX operating systems,
like FreeBSD, have less than 2% of the kernel coded in assembly lan-
guage. I am sure that the proliferation of assembly code in OS/2 had
an impact on the development team’s ability to port the code and insti-
tute design changes.

NOTE Cloning is not limited to the bio-tech sector. An operating
system clone is typically constructed by taking the system call interface
of the original OS and performing a clean-room implementation of
those calls. The clone differs from the original because those system
calls are implemented using different algorithms and data structures.
For example, FreeDOS is a clone of Microsoft’s DOS. Tanenbaum’s
MINIX is actually a UNIX clone. It is a well-documented fact that
Microsoft’s 1982 release of its DOS operating system was a clone of
IBM’s PC-DOS.

System calls are the atomic building blocks that all other APIs rely
on. The user libraries that help to manage memory are built upon
the relevant system calls. The layering effect that is generated by
building one set of functions on top of another is illustrated in Fig-
ure 3.12.

High-Level Services 153

C
h
a
p
te

r
3

User libraries cannot directly access system calls. They must all
travel through a choke point called the system call gate. If an operat-
ing system were a fortress, the system call gate would be its
drawbridge. Everything outside the gate runs in user mode, and
everything inside the fortress runs in kernel mode.

The system call gate is the only way in and out of the kernel.
This is because memory management at the operating system level,
in conjunction with the processor, prevents user code from making a
FAR JMP directly to kernel functions. For the most part, this keeps
the Viking pillagers at a safe distance from the inhabitants of the
kernel. Occasionally, however, there are curious explorers like Sven
Schreiber who find a hole in the castle wall. Sven found a way
around the Windows 2000 system call gate. He describes this dis-
covery in his book, Undocumented Windows 2000 Secrets.

NOTE In an operating system like DOS, which has no memory pro-
tection, it is possible to execute an interrupt service routine by using a
FAR JMP instruction with some assorted assembly language acrobat-
ics. There’s nothing in place to prevent a program from jumping to the
location of the system call’s instructions and executing them.

Typically, a system call gate is implemented as an interrupt handler.
The ISR that mans the system call drawbridge checks to see if the
user request is valid. If the service request is valid, the call gate ISR
then reroutes the request and its arguments to the appropriate sys-
tem call in kernel space. When the requested system call is done, it
hands off execution back to the system call gate, which then returns
execution control to the user program.

user library � system call gate � system call
restaurant customer � waiter � cook

154 Chapter 3

Figure 3.12

The C programming language’s standard library is a classic example
of this tactic. Let’s look at a somewhat forced implementation of
the putchar() function to see how library functions build upon
system functions. To begin with, most standard library implementa-
tions define putchar() in terms of its more general sibling,
putc(), which writes a character to a given output stream. In the
case of putchar(), the output stream is fixed as standard output
(stdout).

#define putchar(c) putc(c,stdout)

Thus, to understand putchar(), we must dissect putc():

int putc(int ch, FILE *stream)

{

int ret;

ret = write(stream,&ch,1);

if(ret!=1){ return(EOF); }else{ return(c); }

}

The putc() function, in turn, wraps a system call called write().
A recurring theme that you will notice is the tendency of functions
with specific duties to invoke more general and primitive routines.

/*

stream = output stream to write to

buffer = buffer of bytes to write to stream

nbytes = number of bytes to write

returns: number of bytes written to stream

*/

int write(FILE *stream, void *buffer, int nbytes)

{

struct call_struct;

call_struct.type = FILE_SYSTEM;

call_struct.subtype = BUFF_OUTPUT;

call_struct.param1 = (long)stream;

call_struct.param2 = (long)buffer;

call_struct.param3 = nbytes;

asm

{

MOV ECX,USER_LIBRARY

LEA EAX,call_struct

INT SYSTEM_GATE

}

}

Notice how the write() function is actually a front man for a more
general system call gate called SYSTEM_GATE.

High-Level Services 155

C
h
a
p
te

r
3

The Heap

The heap is just a region of bytes. It is a portion of an application’s
address space that has been set aside for run-time memory
requests. As mentioned previously, the general nature of possible
memory requests forces the code that manages the heap to have to
deal with a number of possible contingencies. The heap manager
cannot handle every type of request equally well, and concessions
have to be made. As a result of this, heap management is beset by
three potential pitfalls:

� Internal fragmentation

� External fragmentation

� Location-based latency

Internal fragmentation occurs when memory is wasted because a
request for memory resulted in the allocation of a block of memory
that was much too big, relative to the request size. For example,
let’s say you request 128 bytes of storage and the run-time system
gives you a block of 512 bytes. Most of the memory you’ve been
allocated will never be used. Management schemes that allocate
fixed-sized memory blocks can run into this problem.

External fragmentation occurs when a series of memory requests
leaves several free blocks of available memory, none of which are
large enough to service a typical request.

Latency problems can occur if two data values are stored far
apart from one another in memory. The farther apart two values are
in memory, the longer it takes for the processor to perform opera-
tions that involve those values. In an extreme case, one value may
be so far away that it gets paged-out to disk and requires a disk I/O
operation to bring it back into the ball game.

Latency problems can also occur because of complexity. If an
algorithm takes extensive measures to ensure that internal and
external fragmentation are both minimized, the improvement in
memory utilization will be offset by the additional execution time
necessary to perform the requisite accounting.

Depending on the allocation technique used by the heap manage-
ment code, it will suffer from one or more of these problems. Rarely
can you have your cake and eat it too.

Figure 3.13 displays these three pitfalls.
In the end, what makes the heap an interesting problem is not

the heap itself, but the algorithms used to manage it. There are two
different approaches to managing heap memory: manual memory
management and automatic memory management.

156 Chapter 3

In the next two sections, I will examine both of these techniques
and offer examples of how they are used in practice.

Manual Memory Management

Manual memory management, also known as explicit memory man-

agement, requires the programmer to explicitly allocate and recycle
heap storage. This is performed through function calls like
malloc() and free(). Explicit memory management shifts
responsibility onto the shoulders of the developer with regard to
keeping track of allocated memory.

The result of this is that the algorithms implemented by the
run-time systems are simpler and involve less bookkeeping. This is
both a blessing and a curse. Explicit memory management allows
programs to be smaller because the compiler does not have to emit
any extra instructions or data to handle garbage collection. In addi-
tion, explicit memory management also gives the programmer a
better idea of what is actually going on behind the curtain.

The curse of this extra complexity is that it can lead to mistakes
(this is an understatement).

If a dynamically allocated variable leaves its scope before being
recycled, the memory cannot be recycled and the program will grad-
ually drain away memory until the computer halts. This is known as
a memory leak, and is an insidious problem to try to correct (the
author is a voice of experience in this matter). In Chapter 2 we
encountered a program that created a memory leak during the dis-
cussion of siege warfare.

High-Level Services 157

C
h
a
p
te

r
3

Figure 3.13

If a dynamically allocated variable is recycled before it goes out of
scope, the variable will become an invalid reference and can poten-
tially crash the program (or produce incorrect results, which is even
worse). The invalid reference in this kind of situation is known as a
dangling pointer.

Memory leaks and dangling pointers are the bugaboos of every C
programmer’s working hours. Trying to find these problems by
inspection alone can entail many frustrating debugging sessions.
Fortunately, there are specialized tools that can be used to track
down memory leaks. These tools tend to be platform specific, so it
is hard to recommend a universal solution. The Boehm-Demers-
Weiser (BDW) conservative garbage collector, described later, can
be used as a memory leak detector on several platforms.

Example: C Standard Library Calls

The ANSI C standard library, whose prototypes are spelled out in
stdlib.h, supports manual memory management through a
series of four functions:

void *calloc(size_t num, size_t size);

void free(void *);

void malloc(size_t);

void *realloc(void *block, size_t size);

The calloc() function allocates an array of num elements, each
element being size bytes long, and initializes everything to zero.
The free() function releases an allocated block of memory. The
malloc() function allocates size number of bytes from the heap.
The realloc() function changes the size of an allocated block
of memory. As you can see, there are very few amenities. Calls to
calloc() and realloc() typically end up indirectly calling
malloc(). So most of the behind-the-scenes work is actually done
by malloc() and free().

void *calloc(size_t num, size_t size)

{

void ptr;

size_t nbytes;

nbytes = num*size;

ptr = malloc(nbytes);

if(ptr!=NULL){ memset(ptr, 0x0,nbytes); }

return ptr;

}

void *realloc(void *ptr, size_t size)

{

unsigned char *cptr;

158 Chapter 3

int oldsize;

if (ptr == NULL){ return malloc(size); }

oldsize = sizeMem(ptr);

if (size <= oldsize){ return ptr; }

cptr = (char *)malloc(size);

memcpy(cptr, ptr, oldsize);

free(ptr);

return cptr;

}

The implementation of malloc() and free() varies greatly from
one distribution to the next, so it is a little harder for me to offer ref-
erence implementations. The malloc() and free() functions on
UNIX platforms are front men for the brk() system call. Its proto-
type usually resembles something like this:

int brk(void *end_heap);

The brk() system call is responsible for modifying the size of a
program’s heap by either increasing or decreasing its end point. The
end_heap value can be changed as long as it does not infringe on
other sections of the application.

NOTE The POSIX standard does not include brk() on the grounds
that it dictates a certain underlying memory model implementation.
On most flavors of UNIX, however, you will find the brk() system call.
If you are interested in looking at an implementation of brk(), I
would recommend taking a look at the one that accompanies Linux. It
is located in the /usr/src/linux/mm/mmap.c file.

Now that you are familiar with C’s manual memory allocation func-
tions, I can demonstrate how dangling pointers occur and what
happens when they do. Consider the following example:

/* --dangleptr.c-- */

#include<stdio.h>

#include<stdlib.h>

void main()

{

char *cptr1;

char *cptr2;

cptr1 = malloc(10);

printf("address=%p\n",cptr1);

cptr1[0]='a'; cptr1[1]='b'; cptr1[2]=0;

printf("cptr1=%s\n",cptr1);

free(cptr1); /* whoops! */

High-Level Services 159

C
h
a
p
te

r
3

cptr2 = malloc(10);

printf("address=%p\n",cptr2);

cptr2[0]='c'; cptr2[1]='d'; cptr2[2]=0;

printf("cptr1=%s\n",cptr1);

return;

}

This program will produce the following output when it is run:

address=00770670

cptr1=ab

address=007706A0

cptr1=

As expected, the contents of memory pointed to by cptr1 were
corrupted after it was prematurely set free. Imagine what would
happen with a dangling pointer to a database handle in a large ERP
application . . .

Automatic Memory Management

Automatic memory management, also called garbage collection, takes
care of all the memory recycling details. This allows the program-
mer to focus on domain-specific problem solving. An analyst who is
writing a purchase-order system already has enough complexity to
deal with just trying to get the logic of the purchase-order applica-
tion to function. Having to manage low-level details like memory
only makes the job more difficult.

NOTE Scientists like George Miller have claimed that the average
human can only keep track of about seven things at any point in time.
By forcing the developer to keep track of memory recycling, the num-
ber of things the developer has to juggle increases. Garbage collection
is an effective solution to this problem.

Don’t take my word for it. Here is what Bertrand Meyer, the inventor
of Eiffel, has to say:

“Manual memory management — that is to say, the absence of
automatic garbage collection — suffers from two fatal flaws: it is dan-
gerous (as it is all too easy to make a mistake, causing errors that are
often missed during testing and arise only when the system goes oper-
ational, usually in erratic and hard-to-reproduce conditions); and it is
extremely tedious, forcing the developer to concentrate on mundane
yet complex tasks of bookkeeping and garbage collection instead of
working on their application. These deficiencies are bad enough to
cancel out any benefit that is claimed for the application of object-ori-
ented techniques.”

A significant benefit of using a garbage collector is that the recycling
problems that plague manual memory management are eliminated.
Memory leaks and dangling pointers do not exist in a program that

160 Chapter 3

uses automatic memory management. Automatic memory takes
care of freeing allocated memory so the programmer isn’t given the
opportunity to make a recycling error.

Garbage collection was entirely theoretical until 1959, when Dan
Edwards implemented the first garbage collection facilities. It just
so happened that Dan was involved with John McCarthy in the
development of the LISP programming language. LISP, which was
intended for algebraic LISt Processing, started off as a notational
concept that evolved into a computer language. When compared to
other programming languages that existed during its development,
LISP was way ahead of its time.

There were, however, problems with LISP’s performance, and
this was probably the price that LISP paid for its advanced features.
The garbage collection schemes in early implementations of LISP
were notoriously slow. One response to this problem was to push
basic operations down to the hardware level. There were companies
that attempted to follow this route, like Symbolics, which sold LISP
machines. LISP machines were manufactured in the 1970s and
1980s. The idea, unfortunately, never really caught on. In the
mid-1990s, Symbolics went bankrupt.

There are a number of programming environments that support
automatic memory management. This includes popular virtual
machines like Java’s and more obscure run times, like the one that
Smalltalk utilizes. There are even garbage collectors than can be
plugged into native code via user mode libraries. This brings us to
the Boehm-Demers-Weiser conservative garbage collector.

Example: The BDW Conservative Garbage
Collector

The Boehm-Demers-Weiser (BDW) conservative garbage collector
is a drop-in replacement for malloc() that eliminates the need to
call free(). This allows old, moldy C programs to have their mem-
ory management scheme upgraded with minimal effort. The only
catch is that the BDW collector has to be ported, which is to say
that the collector has platform dependencies. If you are working on
an obscure platform, like Trusted Xenix, you will not be able to use
it.

NOTE The BDW garbage collector can also be modified to detect
memory leaks.

High-Level Services 161

C
h
a
p
te

r
3

You can download a copy of the distribution and view additional
information by visiting http://reality.sgi.com/
boehm/gc.html.

The BDW distribution has been ported to a number of different
platforms. Each one has its own makefile. On Windows, the BDW
garbage collector can be built into a single-threaded, static library
(gc.lib) using the following command:

C:\DOCS\bdw\gc6.0>nmake /F NT_MAKEFILE

NOTE You will need to make sure that the necessary environmental
variables have been set up. You can do so by executing the
VCVARS32.BAT batch file before you invoke NMAKE.

Here is a short example to demonstrate the BDW collector in
action:

/* --testbdw.c-- */

#include<stdio.h>

#define GC_NOT_DLL

#include<gc.h>

unsigned long oldmem=0;

void printMemSize()

{

unsigned long nfree;

nfree = GC_get_free_bytes();

printf("total heap=%7lu\t",GC_get_heap_size());

printf("free bytes=%7lu\t",nfree);

if(oldmem!=0)

{

printf("change=%ld",(oldmem-nfree));

}

printf("\n");

oldmem = nfree;

return;

}/*end printHeapSize*/

#define KB 16*1024 /* 16KB = 16384 bytes */

void main()

{

short j;

unsigned long i;

for(j=0;j<15;j++)

{

162 Chapter 3

unsigned char *bdwptr;

bdwptr = GC_malloc(KB);

for(i=0;i<KB;i++){ bdwptr[i]='a'; }

printMemSize();

}

printf("\nforcing collection\n");

GC_gcollect();

printMemSize();

return;

}/*end main*/

In the previous code example, I reuse the bdwptr pointer repeat-
edly in an effort to create a memory leak. If you compile and run
this program on Windows, you will get output like the following:

total heap= 65536 free bytes= 45056

total heap= 65536 free bytes= 24576 change=20480

total heap= 65536 free bytes= 4096 change=20480

total heap= 65536 free bytes= 24576 change=-20480

total heap= 65536 free bytes= 4096 change=20480

total heap= 131072 free bytes= 49152 change=-45056

total heap= 131072 free bytes= 28672 change=20480

total heap= 131072 free bytes= 8192 change=20480

total heap= 131072 free bytes= 90112 change=-81920

total heap= 131072 free bytes= 69632 change=20480

total heap= 131072 free bytes= 49152 change=20480

total heap= 131072 free bytes= 28672 change=20480

total heap= 131072 free bytes= 8192 change=20480

total heap= 131072 free bytes= 90112 change=-81920

total heap= 131072 free bytes= 69632 change=20480

forcing collection

total heap= 131072 free bytes= 110592

change=-40960

Press any key to continue

As you can see, the amount of free memory does not just descend
downward, as it normally would if you were using malloc().
Instead, it increases a couple of times, which indicates that garbage
collection has occurred. At the end of the sample code, I explicitly
force collection to illustrate this.

NOTE You will need to make sure that the linker includes gc.lib
in its list of libraries. Also, I could only get this to work with the release

version of Visual Studio’s libraries. Trying to link gc.lib to Microsoft’s
debug libraries gave my linker a fit.

High-Level Services 163

C
h
a
p
te

r
3

Manual Versus Automatic?

I cannot think of a better way to start a heated argument at an engi-
neering meeting than to bring up this topic. Within minutes, people
will go from calm and deliberate to emotional and violent. Although
I have my own opinion, I am going to back up my conclusions with
source code that you can test yourself. Nothing beats empirical
evidence.

Both explicit memory management and automatic memory man-
agement involve explicit allocation of memory; the difference
between the two methods is how they deal with memory that isn’t
needed anymore and must be discarded back into the heap.

Garbage collection advocates claim that the energy committed to
dealing with memory leaks and dangling pointers would be better
spent on building a garbage collection mechanism. This is a very
powerful argument — if the performance hit from garbage collec-
tion bookkeeping is not noticeable.

This is a big “if.”
Early garbage collection implementations like the one for LISP

were notoriously slow, sometimes accounting for almost 50% of
execution time. Not to mention that explicit memory management
proponents will argue that the emergence of tools that detect mem-
ory leaks have eliminated traditional problems. Thus, performance
is a key issue.

Garbage collection supporters will jump up and down in an effort
to demonstrate that the performance problems that plagued LISP
are no longer an issue. It is as though they are personally insulted
that you are questioning their position.

Let’s try to avoid arm waving and examine some published
results.

I found two articles that take a good look at the Boehm-Demers-
Weiser conservative garbage collector. The first, a 1992 paper by
Benjamin Zorn, demonstrates that the BDW collector is, on aver-
age, about 20% slower than the fastest explicit memory manager in
each experimental trial. The second, published by Detlefs et. al. in
1993, indicates that the BDW collector is, on average, about 27%
slower than the fastest explicit memory manager in each experi-
mental trial. In these articles, this was what the authors claimed
was the “comparable” performance of the BDW garbage collector.

Table 3.4 presents a comparison of manual and automatic mem-
ory management.

164 Chapter 3

Table 3.4

Manual Memory
Management

Automatic Memory
Management

Benefits size (smaller)

speed (faster)

control (you decide when to
free)

constrains complexity

Costs complexity

memory leaks

dangling pointers

larger total memory footprint

“comparable” performance

Garbage collection is not a simple task. It requires the garbage col-
lector to ferret out memory regions that were allocated but are no
longer needed. The bookkeeping procedures are complicated, and
this extra complexity translates into executable code. Hence, the
total memory image of a program using garbage collection will be
larger than one that uses automatic memory management.

Let us look at an example. This way, I cannot be accused of sup-
porting my conclusions with arm waving. Consider the following
program that uses traditional memory management facilities:

#include<stdio.h>

#include<stdlib.h>

#define KB 16*1024 /* 16KB = 16384 bytes */

void main()

{

short j;

unsigned long i;

for(j=0;j<15;j++)

{

unsigned char *bdwptr;

bdwptr = malloc(KB);

for(i=0;i<KB;i++){ bdwptr[i]='a'; }

}

return;

}/*end main*/

Now look at one that uses the BDW collector:

#include<stdio.h>

#define GC_NOT_DLL

#include<gc.h>

#define KB 16*1024 /* 16KB = 16384 bytes */

High-Level Services 165

C
h
a
p
te

r
3

void main()

{

short j;

unsigned long i;

for(j=0;j<15;j++)

{

unsigned char *bdwptr;

bdwptr = GC_malloc(KB);

for(i=0;i<KB;i++){ bdwptr[i]='a'; }

}

return;

}/*end main*/

When I built both of these programs on Windows, the executable
that used manual memory management calls was 27,648 bytes in
size. The executable that used the BDW collector was 76,800 bytes
in size. This is over twice the size of the other program. QED.

With manual memory management, the programmer is responsi-
ble for keeping track of allocated memory. None of the bookkeeping
manifests itself in the source code as extra instructions. When the
programmer wants to release memory, they call free(). There is
no need to execute a lengthy series of functions to sweep through
memory looking for “live” pointers.

In the process of hunting down memory to free, the garbage col-
lector will also find many allocated regions of memory that are still
needed, and it will not free these blocks of memory. However, this
means that the collector will repeatedly perform unnecessary pro-
cedures every time it attempts collection. This suggests to me that
these superfluous actions will cause automatic memory collection to
be necessarily slower than manual memory management.

Again, I would like to rely on empirical data instead of just
appealing to your sense of intuition. Consider the following source
code:

#include<stdio.h>

#include<windows.h>

#include<stdlib.h>

#define KB 1024

void main()

{

short j;

unsigned long i;

long msecs1,msecs2;

unsigned char *bdwptr[16*KB];

166 Chapter 3

msecs1 = msecs2 = 0;

msecs1 = GetTickCount();

for(j=0;j<(16*KB);j++)

{

bdwptr[j] = malloc(KB);

for(i=0;i<KB;i++){ (bdwptr[j])[i]='a'; }

}

msecs2 = GetTickCount();

printf("msec elapsed=%ld\n",(msecs2-msecs1));

return;

}/*end main*/

Now consider another program that uses the BDW collector:

#include<stdio.h>

#include<windows.h>

#define GC_NOT_DLL

#include<gc.h>

#define KB 1024

void main()

{

short j;

unsigned long i;

long msecs1,msecs2;

msecs1 = msecs2 = 0;

msecs1 = GetTickCount();

for(j=0;j<(16*1024);j++)

{

unsigned char *bdwptr;

bdwptr = GC_malloc(KB);

for(i=0;i<KB;i++){ bdwptr[i]='a'; }

}

msecs2 = GetTickCount();

printf("msec elapsed=%ld\n",(msecs2-msecs1));

return;

}/*end main*/

The program that used malloc() completed execution in 427 mil-
liseconds. The program that used the BDW garbage collector took
627 milliseconds to execute. I ran each of these programs several
times to prove to myself that this wasn’t some kind of fluke.

High-Level Services 167

C
h
a
p
te

r
3

� Manual memory program times: 432, 427, 426, 443, 435, 430,
437, 430

� BDW collector program times: 633, 622, 624, 650, 615, 613,
630, 627

Time units are in milliseconds. I could have performed more trials
and included an extended statistical analysis of mean values, but I
think the results are already pretty clear.

NOTE I ran the previous two programs on a 700MHz Pentium. If
you used more recent (GHz) processors, you would still see the same
degree of lag.

Finally, garbage collection takes control away from the developer.
The heap manager decides when to free memory back to the heap
continuum, not the developer. For example, Java has a Sys-
tem.gc() call, which can be used to suggest to the Java virtual
machine that it free its surplus memory. However, the JVM itself
still has the final say as to when memory is actually set free. This
can be a good thing for an engineer who doesn’t want to be bothered
with details, but it is a bad thing if you actually do want to dictate
when an allocated block of memory is released.

NOTE In the end, using explicit or automatic memory management
is a religious question, which is to say that deciding to use explicit or
automatic methods reflects the fundamental beliefs, values, and priori-
ties of the developer. As I’ve stated before, there are no perfect
solutions. Every approach involves making some sort of concession.
Explicit memory management offers speed and control at the expense
of complexity. Manual memory management forsakes performance in
order to restrain complexity.

The Evolution of Languages

The fundamental, core issue encountered in software engineering is
complexity. The evolution of programming languages has been
driven by the need to manage and constrain complexity. Initially,
programs were hard-coded in raw binary. This was back in the days
of Howard Aiken’s MARK I, which was unveiled in 1944. As the
years wore on, programs got to a size where coding in raw binary
was simply too tedious.

In 1949, the first assembly language was developed for the
UNIVAC I. Assembly language made programming less complicated
by replacing raw binary instructions with terse symbolic

168 Chapter 3

mnemonics. Originally, a programmer would have had to manually
write something like:

10010110 10101110 01101011

Using assembly language, the previous binary instruction could be
replaced with:

INC AR 0x6B

This primitive symbolic notation helped to make programming eas-
ier. Again, programs became larger and more complicated to the
extent that something new was needed. This something new reared
its head in the next decade. In the 1950s, with the emergence of
transistor-based circuits, higher-level languages emerged. Two such
languages were COBOL and FORTRAN. All of these early
high-level languages were block-based and used the GOTO state-
ment, or something resembling it, to move from block to block.

The emergence of block-based languages led to the development
of structured programming in the late 1960s. The essay that led to
the birth of structured programming was written by Dijkstra in
1968. It was a letter in the Communications of the ACM titled
“GOTO Statement Considered Harmful.” This revolutionary paper
caused quite a stir. The state-of-the-art languages at the time, like
COBOL II and FORTRAN IV, used GOTOs liberally.

NOTE Structured programming is an approach to writing proce-
dure-based code where the use of the GOTO statement is either
minimized or excluded entirely. History sides with Dijkstra. Structured
programming was the paradigm that characterized software develop-
ment in the 1970s and 1980s.

When a software team in the 1970s wanted to design a business
application, they would first model the data that the application
would manage. This usually meant designing database tables and
memory resident data structures. This initial collection of schemas
and data types would be the starting point around which everything
else would revolve. Next, the team would decide on the algorithms
and corresponding functions that would operate on the data.

Structured programming is notably either data-oriented or proce-
dure-oriented, but never both.

Even though structured programming was supposed to be a
cure-all, it fell short of its expectations. Specifically, the structured
approach proved to be inadequate with regard to maintaining large
projects. This is a crucial flaw because most of the money invested
in a software project is spent on maintenance. During the 1980s,
structured programming was gradually replaced by the

High-Level Services 169

C
h
a
p
te

r
3

object-oriented approach that was promoted by languages like C++
and Smalltalk.

Can you see the trend I’m trying to illuminate?
I am of the opinion that every programming language has a com-

plexity threshold. After a program reaches a certain number of lines
of code, it becomes difficult to understand and modify. Naturally,
lower-level languages will have a lower complexity threshold than
the higher ones. To get an idea of what the complexity threshold is
for different types of programming languages, we can take a look at
a collection of well-known operating systems (see Table 3.5).

Table 3.5

OS Lines of Code Primary
Language

Source

DOS 20,000 assembler Modern Operating Systems
(Andrew Tanenbaum)

MINIX 74,000 C Operating Systems, Design and
Implementation (Andrew
Tanenbaum)

FreeBSD 200,000
(kernel only)

C The Design and Implementation
of 4.4BSD Operating System
(McKusick et. al.)

Windows 98 18 million lines
(everything)

C/C++ February 2, 1999 (A.M. Session)
United States vs. Microsoft et. al.

From Table 3.5, it seems that the number of lines of code that can
be efficiently managed by a language increase by a factor of 10 as
you switch to more sophisticated paradigms (see Table 3.6).

Table 3.6

Language Paradigm Complexity Threshold

Raw binary no-holds-barred 10,000 instructions

Assembler block-based using GOTO 100,000 lines

C structured (no GOTO) 1,000,000 lines

C++ object-oriented 10,000,000 lines

Inevitably, the languages that survive, and perhaps pass on their fea-
tures to new languages, will be the ones that are the most effective
at managing complexity. In the early days of UNIX, almost every bit
of system code was written in C. As operating systems have grown,
the use of C, as a matter of necessity, has given way to implementa-
tion in C++. According to an article in the July 29, 1996, Wall Street

Journal, the Windows NT operating system consists of 16.5 million
lines of code. It is no surprise, then, that Microsoft has begun build-
ing some of its primary OS components entirely in C++. For
example, a fundamental component of the Windows NT kernel, the

170 Chapter 3

Graphics Device Interface (GDI32.DLL), was written completely
in C++.

QUESTION
What does any of this have to do with memory management?

ANSWER
The evolution of programming languages has basically mir-

rored the development of memory management since the 1950s.
As I mentioned earlier, higher-level languages like COBOL and
FORTRAN were born around the same time as the transistor. In
the beginning, computer memory was entirely visible to a pro-
gram. There was no segmentation and no protection. In fact, the
program typically took up all the available memory. Likewise, the
first computer programming languages were also fairly primitive.
As time passed, both memory management and programming
languages matured into the powerful tools that they are today.
There are memory managers today that allow dozens of tightly
coupled processors to share the same address space, and there
are elegant object-oriented languages that allow complexity to be
constrained.

In the following sections, I am going to provide a brief survey of
several programming languages in order to demonstrate how differ-
ent languages make use of the different high-level memory
services. I will begin with early languages and work my way slowly
to the present day. Along the way, I will try to offer examples and
insight whenever I have the opportunity.

Case Study: COBOL

COBOL — this one word stirs up all sorts of different reactions in
people. COmmon Business Oriented Language was formally
defined in 1959 by the Conference On DAta SYstems Language
(CODASYL). COBOL has its roots in the FLOW-MATIC language
that was developed by Rear Admiral Grace Murray Hopper. Admiral
Hopper is considered the mother of modern business computing.

“It’s always easier to ask forgiveness than it is to get permission.”
— Grace Murray Hopper

In 1997, the Gartner Group estimated that there were over 180 bil-
lion lines of COBOL code in use and five million new lines of
COBOL code being written each year. Authors like Carol Baroudi
even estimated the number of lines of legacy COBOL code at 500
billion lines. Needless to say, this mountain of code has taken on a

High-Level Services 171

C
h
a
p
te

r
3

life of its own and probably developed enough inertia to last at least
another hundred years.

The preponderance of COBOL is partially due to historical
forces. COBOL was adopted by the United States Department of
Defense (DoD) in 1960 and became a de facto standard. The reason
for this is that the DoD, the largest purchaser of computer hardware
both then and now, would not buy hardware for data processing
unless the vendor provided a COBOL compiler. Another reason
COBOL is so widespread is due to the fact that COBOL is very
good at what it is designed for — executing business calculations.
When it comes to performing financial computations to fractions of a
cent without introducing rounding errors, COBOL is still the king of
the hill. The language features that support financial mathematics in
COBOL are a very natural part of the language and extremely easy
to use.

QUESTION
Will COBOL ever die? Will it be replaced?

ANSWER
I would like to assume that someday COBOL will be retured.

However, I suspect that COBOL houses will probably, fundamen-
tally, stay COBOL houses. 180 billion lines is a lot of source code.
They may occasionally renovate with Object COBOL or slap on a
new layer of paint with Java, but replacing the plumbing of an
aging mansion is a very expensive proposition. In fact, it’s often
cheaper to just tear the house down and build a new one. Try
explaining this to the CFO of a Fortune 100 company.

Legacy code may be old, but it supports core business func-
tionality and has been painstakingly debugged. In this kind of
situation, legacy code is seen as a corporate asset that represents
the investment of hundreds of thousands of man-hours. An archi-
tect who actually does want to overhaul a system will, no doubt,
face resistance from a CFO whose orientation tends toward dol-
lars and cents. If a system does what it’s supposed to and helps to
generate income, then why fix it? Throwing everything away for
the sake of technology alone is a ridiculously poor excuse.

Another factor that inhibits the replacement of legacy code is
the sheer size of an existing code base. In order to replace old
code with new code, you have to completely understand the func-
tionality that the old code provides. In a million-line labyrinth of
80-column code, business logic is hard to extract and duplicate.
Often, the people who wrote the code have left the company or
have been promoted to different divisions. Instituting even

172 Chapter 3

relatively simple changes can prove to be expensive and involve
months of reverse engineering and testing. I’ve known Y2K pro-
grammers who were too scared to modify legacy code. The old
code was so convoluted that they didn’t know what kind of reper-
cussions their changes would have.

COBOL has been through several revisions. In 1968, the American
National Standards Institute (ANSI) released a standard for COBOL.
This COBOL standard was revisited in 1974. The current ANSI
standard for COBOL, however, is a combination of the ANSI stan-
dard that was developed in 1985 coupled with some extensions that
were added on in 1989. There have been moves toward a form of
object-oriented COBOL and vendors have come out with their own
forms of it. Nevertheless, when someone talks about ANSI COBOL,
they are referring to COBOL 85 with the additions that were made
in 1989. In the following discussion, I will use COBOL 85. I will also
compile my code using Fujitsu’s COBOL85 V30L10 compiler. If you
are running Windows, you can download a copy from Fujitsu’s web
site.

COBOL is a structured language that does not use a stack or a
heap. All that a COBOL program has at its disposal is a single global
data section and blocks of instructions. In COBOL parlance, a pro-
gram consists of four divisions:

1. Identification division

2. Environment division

3. Data division

4. Procedure division

The identification division is used to let the COBOL compiler know
the name of the program it is translating. The identification division
doesn’t get translated in machine code; it is more of a directive. The
environment division is used to describe the platform that a pro-
gram will be built on and run on, as well as to specify the files that it
will use. Again, this is mostly metadata that is intended for use by
the compiler.

The data division contains, among other things, a working stor-
age section that is basically a large static memory region that serves
all of a program’s storage needs. As I said before, there is no heap
and no stack that a COBOL program can utilize. All that exists is
one big chunk of fixed-size, global memory.

The procedure division consists of blocks of instructions. These
blocks of code do not have formal parameters or local variables like
functions in C. This would require a stack, which COBOL programs

High-Level Services 173

C
h
a
p
te

r
3

do not have. If you want to create storage for a particular block of
code, you will need to use some sort of naming convention in the
working storage section to help distinguish all the global variables.
So the next time someone asks you “what’s in a name?”, you can
tell them.

In general, divisions are composed of sections and sections are
composed of paragraphs. Paragraphs are likewise composed of sen-
tences in an effort to make COBOL resemble written English. To
this end, COBOL sentences are always terminated with periods.

Division Section Paragraph Sentence.

Here is a simple example so that you can get a feel for how these
divisions, sections, and paragraphs are implemented in practice.

000010 @OPTIONS MAIN

000013 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. FIRSTAPP.

000021*--

000022 ENVIRONMENT DIVISION.

000023 CONFIGURATION SECTION.

000024 SOURCE-COMPUTER. INTEL.

000025 OBJECT-COMPUTER. INTEL.

000026 INPUT-OUTPUT SECTION.

000027*--

000028 DATA DIVISION.

000029 WORKING-STORAGE SECTION.

000030 01 ASSETS PIC 9(3)v99 VALUE 000.00.

000031 01 DEBT PIC 9(3)v99 VALUE 000.00.

000032 01 NET PIC S9(3)v99 VALUE 000.00.

000033 01 PRINT PIC ZZZ.ZZ.

000034*--

000035 PROCEDURE DIVISION.

000036 MAIN-CODE SECTION.

000037 MAIN.

000038 MOVE 120.34 TO ASSETS.

000039 MOVE 50.20 TO DEBT.

000040 PERFORM COMPUTE-NET-WORTH.

000050 STOP RUN.

000060 SUBROUTINE SECTION.

000070 COMPUTE-NET-WORTH.

000080 MOVE ASSETS TO NET.

000090 SUBTRACT DEBT FROM NET.

000091 MOVE NET TO PRINT.

000100 DISPLAY " NET: " PRINT.

The above program prints out:

NET: 70.14

174 Chapter 3

I have tried to help delineate the different program divisions using
comment lines. As you can see, the program consists primarily of
data and code. The memory model that this program uses is proba-
bly closely akin to the one displayed in Figure 3.14.

NOTE You might notice line numbers in the previous program’s list-
ing. This is a holdover from the days when punch cards were fed to
mainframes. The motivation was that if you dropped your box of cards
and they became mixed up, you could use the line numbering to sort
your cards back to the proper order.

NOTE The arrangement of a COBOL application is closer to that of
an assembly language program than it is to any structured language.
Data is clumped together in one section, and the code consists of very
crude blocks of instructions. Take a look at the following Intel assembly
language program, and you will see what I mean. COBOL is, without
a doubt, a prehistoric language.

;likeCob.asm---------------------------

.MODEL small, c

.STACK

;working storage-----------------------

.DATA

assets DW 0H

debt DW 0H

net DW 0H

;procedure division--------------------

.CODE

.STARTUP

MOV AX,07H

High-Level Services 175

C
h
a
p
te

r
3

Figure 3.14

MOV [assets],AX

MOV AX,03H

MOV [debt],AX

MOV DX,[assets]

MOV CX,[debt]

SUB DX,CX

ADD DX,'0'

MOV AH,0EH

MOV AL,DL

INT 10H

.EXIT

END

This programming approach might not seem so bad. In fact, at first
glance, it may appear like an effective way to organize an applica-
tion. Do not be fooled by such naïve first impressions. With only a
single section of working storage to provide read/write memory, a
program can become very difficult to read if you want to do anything
even remotely complicated.

Consider the following COBOL program that takes a list of val-
ues and prints out the average of those values and the maximum
value in the list. You should be able to see how COBOL’s limitations
make simple array manipulation nowhere near as straightforward as
it would be in C.

000012 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. STATISTICS.

000021*--

000022 DATA DIVISION.

000023 WORKING-STORAGE SECTION.

000024 01 AVERAGE PIC 9(2) VALUE 0.

000025 01 ARRAY-SIZE PIC 9(1) VALUE 5.

000027 01 ARRAY.

000028 03 ARRAY-ELM PIC 9(2) OCCURS 5 TIMES.

000029 01 COUNT-INDEX PIC 9(1) VALUE 1.

000030 01 ARRAY-MAX PIC 9(1) VALUE 0.

000031*--

000032 PROCEDURE DIVISION.

000033 SOURCECODE SECTION.

000034 MAIN.

000035 PERFORM INIT-ARRAY.

000040 PERFORM COMPUTE-AVERAGE.

000041 PERFORM GET-MAX.

000050 STOP RUN.

176 Chapter 3

000051*--

000052 SUBROUTINES SECTION.

000053 INIT-ARRAY.

000054 MOVE 5 TO ARRAY-ELM (1).

000055 MOVE 6 TO ARRAY-ELM (2).

000056 MOVE 3 TO ARRAY-ELM (3).

000057 MOVE 7 TO ARRAY-ELM (4).

000058 MOVE 4 TO ARRAY-ELM (5).

000060 COMPUTE-AVERAGE.

000062 PERFORM COMPUTE-AVERAGE-SUM ARRAY-SIZE TIMES.

000064 DIVIDE ARRAY-SIZE INTO AVERAGE.

000065 DISPLAY "average is: " AVERAGE.

000070 COMPUTE-AVERAGE-SUM.

000071 ADD ARRAY-ELM(COUNT-INDEX) TO AVERAGE.

000081 ADD 1 TO COUNT-INDEX.

000091 GET-MAX.

000101 MOVE 1 TO COUNT-INDEX.

000102 MOVE ARRAY-ELM(1) TO ARRAY-MAX.

000111 PERFORM GET-MAX-EXAMINE-CURRENT ARRAY-SIZE

TIMES.

000112 DISPLAY "max is: " ARRAY-MAX.

000121 GET-MAX-EXAMINE-CURRENT.

000131 IF ARRAY-ELM(COUNT-INDEX) > ARRAY-MAX

000132 MOVE ARRAY-ELM(COUNT-INDEX) TO ARRAY-MAX

000141 END-IF

000151 ADD 1 TO COUNT-INDEX.

When this source code (statistics.cob) is compiled and linked
into an executable, it will produce the following output when run:

average is: 05

max is: 7

The absence of the stack and heap may be a good thing from the
view of a sysadmin, who does not have to worry about memory
leaks or buffer overflow exploits, but from the perspective of a pro-
grammer, COBOL’s spartan memory arrangement is a curse. Very
large COBOL applications can quickly become impossible to main-
tain or even understand. As a veteran Y2K COBOL programmer, I
can attest to this fact. Some of the programs I looked at were so
large, complicated, and crucial to business operations, that I was
often scared to touch anything.

Case Study: FORTRAN

FORTRAN has the distinction of being considered one of the first
compiled computer languages. The development of FORTRAN
began in 1954 and was initiated by a team of engineers at IBM led
by John Backus. FORTRAN originally stood for “IBM Mathematical

High-Level Services 177

C
h
a
p
te

r
3

FORmula TRANslation system.” Within 10 years, every hardware
manufacturer in creation was shipping their computers with a
FORTRAN compiler. Naturally, each vendor had to tweak
FORTRAN so that they could call their compiler “value added.” To
help reign in chaos, a standards committee stepped in. In 1966, the
first draft of the FORTRAN standard was released by the ASA (a
predecessor to ANSI). This version of FORTRAN is known as
FORTRAN 66. FORTRAN was the first high-level language to be
specified by a standards committee.

NOTE Any computer science student who has ever studied compiler
theory will recognize the name Backus. This is because John Backus
helped invent a notation called Backus-Naur Form (BNF), which is used
to specify the context-free grammar of a programming language.

In 1977, the ANSI committee in charge of FORTRAN released a
revised standard. It added several new features to the language
including the CHARACTER data type and flow-control constructs
like IF-ELSE blocks (i.e., IF. . .THEN. . .ELSE. . .ENDIF).
FORTRAN 77 is also known as F77.

In 1990 and 1995, ANSI released new standards for FORTRAN.
FORTRAN 90 (F90) was a major revision. FORTRAN 95 (F95)
merely added a few extensions. F90, as specified in ANSI
X3.198-1992, supplemented F77 with new features like dynamic
memory allocation (via ALLOCATE and DEALLOCATE) and a stack
to support recursion. However, because of the time lag between the
F77 and the F90 standard, other languages were able to win popu-
larity, which pushed FORTAN into the backwaters of history.

For the sake of illustration, I will be looking at FORTRAN 77.
F77 occupies the next level of sophistication above COBOL 85 in
terms of language features, and this will make it a good
stepping-stone.

NOTE A Control Data veteran once confided in me that, in his day,
FORTRAN programmers looked down on COBOL programmers. This
was because FORTRAN is geared toward analytic programs that per-
form sophisticated numerical computation, instead of the mundane
dollars-and-cents math that is a core component of COBOL programs.
FORTRAN programmers were scientists in white coats, and COBOL
programmers were corporate schlubs who sat in cubes.

F77, from an organizational standpoint, actually provides much
better procedure modularity when compared to COBOL 85. Spe-
cifically, an F77 program consists of:

� A single PROGRAM procedure

� Zero or more external procedures

178 Chapter 3

An external procedure can be a function or a subroutine. A function

is a procedure that can possess multiple arguments but returns only
a single output value via its name identifier. A subroutine is invoked
by a CALL statement and can accept an arbitrary number of input
and output parameters.

Here is a simple program to help illustrate these concepts:

*-- metrics.F ---

PROGRAM METRICS

INTEGER ARRAY(5)

INTEGER MAX

ARRAY(1)=4

ARRAY(2)=10

ARRAY(3)=26

ARRAY(4)=8

ARRAY(5)=3

MAX=0

WRITE(*,*) "val= ", GETAVG(ARRAY,5)

CALL GETMAX(ARRAY,5,MAX)

WRITE(*,*) "max= ", MAX

END

*--

REAL FUNCTION GETAVG(ARR,NELM)

INTEGER ARR(NELM)

INTEGER INDEX

REAL SUM

SUM=0

DO 10,INDEX = 1,NELM

SUM=SUM+ARR(INDEX)

10 CONTINUE

GETAVG = SUM/NELM

END

*--

SUBROUTINE GETMAX(ARR,NELM,MX)

INTEGER ARR(NELM)

INTEGER MX

MX=ARR(1)

DO 20,INDEX =2,NELM

IF(ARR(INDEX)>MX) THEN

MX = ARR(INDEX)

END IF

20 CONTINUE

END

If you run this program, you will see:

val= 10.1999998

max= 26

As you can see, F77 provides much better encapsulation than
COBOL 85. Each procedure is capable of declaring its own

High-Level Services 179

C
h
a
p
te

r
3

arguments, local variables, and return values. By placing these vari-
ables where they are relevant, instead of in a global data section, the
code is much easier to read and reuse.

QUESTION
How does FORTRAN support procedure arguments and local

variables without a stack?

ANSWER
In F77, each routine has its own private stash of static mem-

ory that serves as a storage space for local variables and
arguments. This precludes F77 from implementing recursion, but
it does allow an F77 program to utilize a more sophisticated
memory model than COBOL 85. An example F77 memory model
is displayed in Figure 3.15.

One feature that this per-procedure static memory space supports
is the SAVE statement. The SAVE statement allows the local vari-
ables of a procedure to sustain their values between function calls. If
FORTRAN used an activation record for local variables, it wouldn’t
be possible to implement SAVE.

Here is a short example demonstrating the SAVE statement:

PROGRAM RUNSUM

WRITE(*,*) SIGMA(3)

WRITE(*,*) SIGMA(5)

WRITE(*,*) SIGMA(2)

WRITE(*,*) SIGMA(7)

END

*--

FUNCTION SIGMA(VAL)

180 Chapter 3

Figure 3.15

INTEGER VAL

INTEGER SUM

SAVE SUM

SUM=SUM+VAL

SIGMA = SUM

END

When the previous program is run, the following output is
displayed:

3.

8.

10.

17.

Case Study: Pascal

In 1971 Niklaus Wirth presented the world with his specification of
a structured language named after a French mathematician who
lived during the 17th century. Pascal was inspired heavily by a pro-
gramming language called ALGOL. This seems only natural when
you consider that Wirth was part of the group that originally created
ALGOL. During the 1960s, FORTRAN had supplanted ALGOL as
the mathematical programming language of choice. As a result, the
designers of ALGOL were looking for ways to extend the language.

Pascal supports heavy use of the stack and, unlike F77, allows
function calls to be recursive. Pascal also provides manual access to
the heap via the NEW and DISPOSE statements. Pascal allows global
variables to be defined, which are stored in a static data segment.
Pascal is the first language that we have examined that uses the
stack, the heap, and a data section.

Wirth admits, however, that Pascal is really a toy language that is
intended for educational purposes. The language has a limited set of
features, and this handicap is compounded by the fact that the
Pascal compiler enforces a rigid set of syntax rules. Pascal is not a
suitable language for developing large projects and has been called a
bondage-discipline language by some engineers. Wirth ended up
moving on to invent other languages like Modula and Oberon.
Borland, which marketed a very successful Pascal compiler in the
1980s, currently sells an object-oriented variation of Pascal called
Delphi.

NOTE According to the Hacker’s Dictionary, a bondage-discipline

programming language is one that forces the programmer to abide by
a strict set of syntax rules. The term is used derisively by programmers
who feel that a language’s syntax rules have their origins in the lan-
guage designer’s world view rather than pragmatic inspiration.

High-Level Services 181

C
h
a
p
te

r
3

A Pascal program lies entirely within the boundaries of its
PROGRAM procedure. Inside of the PROGRAM routine are a number
of functions that may be arbitrarily nested. This nesting is particu-
larly annoying to a C programmer like me. A FUNCTION is a routine
that returns a single value via its identifier, and a PROCEDURE is a
function that does not. As with COBOL, procedural code is always
prefixed by variable declarations and definitions.

Consider the following program:

program main;

var

value:integer;

procedure callNested;

function nested1:integer;

function nested2:integer;

begin

writeln('inside nested2()');

nested2 := value+1;

end;

begin

writeln('inside nested1()');

nested1 := nested2+1;

end;

begin

writeln('inside callNested()');

writeln('value= ',nested1);

end;

begin

value:=5;

callNested;

end.

When run, this program will generate the following output:

inside callNested()

value= inside nested1()

inside nested2()

7

Here is another brief example that demonstrates how Pascal can
use different memory components:

program ptour;

const

size=6;

type

intPointer=^integer;

var

iptr:intPointer;

182 Chapter 3

index:integer;

function factorial(arg:integer):integer;

begin

if arg>1 then

factorial := arg * factorial(arg-1)

else

factorial :=1;

end;

begin

index:=10;

iptr:=new(intPointer);

iptr^:=0;

for index:= 1 to size do

begin

iptr^:= iptr^ + factorial(index);

writeln('factorial(',index,')= ',factorial

(index))

end;

writeln('iptr^=',iptr^);

dispose(iptr);

end.

If you run this program, the following output will be sent to the
console:

factorial(1)= 1

factorial(2)= 2

factorial(3)= 6

factorial(4)= 24

factorial(5)= 120

factorial(6)= 720

iptr^=873

The factorial() function is recursive, which proves that Pascal
implements activation records on the stack. I also manually allocate
an integer off the heap and store its address in the variable iptr^
to show how Pascal’s manual memory management scheme works.

Pascal’s variety of memory management facilities and its
easy-to-read structured format place it above COBOL 85 and F77
on the scale of sophistication. However, Pascal is not a language that
you would use to construct production software. The organization of
heavily nested routines in Pascal source code does not lend itself to
constructing large-scale applications. This is why I decided to pres-
ent Pascal before my discussion of C and Java. Pascal may possess
memory management bells and whistles, but it is not a prime-time
language.

High-Level Services 183

C
h
a
p
te

r
3

Case Study: C

The C programming language is the Swiss army knife of program-
ming languages. It is compact, versatile, and you can do darn near
everything with it. Perhaps this is why every operating system
being sold today has been written mostly in C. Part of C’s utility is
based on the language’s provision for low-level operations like
bit-wise manipulation and inline assembly code. C also possesses a
syntax that allows memory addresses to be symbolically manipu-
lated in a number of intricate ways. Furthermore, the fairly simple
function-based granularity of scope is a straightforward alternative
to Pascal’s tendency toward heavy procedure nesting.

NOTE In a sense, C can be viewed as a nifty macro language for
assembly code. C elevates you far enough from assembly code that
you don’t have to worry about maintaining stack frames or keeping
track of offset addresses. You are given enough programming ameni-
ties that you don’t feel like you are being forced to sleep on the floor.
However, C doesn’t really take you any higher than a few floors above
the basement. You can still hop down and tinker with the rusty old fur-
nace, if you so desire.

NOTE If you are interested in the history of C, I offer a brief synopsis
in the “Prerequisites” section of this book’s introduction. For those of
you who want the short version, a guy at Bell Labs named Ken Thomp-
son wrote an operating system named Unics in assembly code back in
the late 1960s. He discovered that porting assembly code is no fun, so
he hacked a language called BCPL into a new language that he called
B. Soon afterward, two of Ken’s friends at Bell Labs (Dennis Ritchie and
Brian Kernighan) got mixed up in Ken’s project, and C was born. They
rewrote Unics in C, Bell Labs trademarked the resulting product as
UNIX, and the rest is history.

The C language can use all of the high-level memory constructs
mentioned in this chapter. C supports global data, local variables,
recursion, and dynamic memory allocation. In other words, C can
make ample use of data sections, the stack, and the heap. As you
saw earlier, there are even tools like the BDW garbage collector,
that can be plugged into C as a set of library functions.

Throughout the chapter, we have used C to illustrate different
high-level services. Now we have the opportunity to bring every-
thing together and look at all the services in a single example.
Consider the following code:

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

184 Chapter 3

#define ERR_STK_SZ 64

#define ERR_STR_SZ 128

#define ERR_LVL_WARN 0

#define ERR_LVL_ERROR 1

#define ERR_LVL_FATAL 2

struct ErrData

{

char *info;

unsigned char level;

};

struct ErrData *stack[ERR_STK_SZ];

int SP;

char *ErrLvl[]={"WARN","ERROR","FATAL"};

void bldErr();

void checkStack();

int main()

{

SP=0;

bldErr();

checkStack();

return(0);

}/*end main*/

void bldErr()

{

stack[SP]=(struct ErrData*)malloc(sizeof(struct

ErrData));

(*stack[SP]).info = malloc(ERR_STR_SZ);

(*stack[SP]).level = ERR_LVL_ERROR;

strncpy((*stack[SP]).info,"testing",ERR_STR_SZ-1);

SP++;

return;

}/*end bldError*/

void checkStack()

{

int i;

for(i=0;i<SP;i++)

{

printf("%s\n",(*stack[i]).info);

printf("%s\n",ErrLvl[(*stack[i]).level]);

}

return;

}/*end checkstack*/

High-Level Services 185

C
h
a
p
te

r
3

When this program is executed, the following output will be
produced:

testing

ERROR

The previous code implements a basic error stack. As errors occur,
they are popped onto the stack and the stack pointer is incre-
mented. In this example, I run through the full gamut of memory
usage. There is global data (i.e., stack[]), heap allocation via
malloc(), and the stack is used to provide storage for function
activation records.

To get a better idea of how this code is realized at the machine
level, let’s look at an assembly code listing. Don’t be concerned if
you can’t immediately “see” everything that is going on. I will dis-
sect this code shortly and point out the important things. When I am
done, you can come back and take a better look. For now, just skim
the following assembly code:

.386P

.model FLAT

PUBLIC _ErrLvl

_DATA SEGMENT

COMM _stack:DWORD:040H

COMM _SP:DWORD

_ErrLvl DD FLAT:$SG336

DD FLAT:$SG337

DD FLAT:$SG338

$SG336 DB 'WARN', 00H

ORG $+3

$SG337 DB 'ERROR', 00H

ORG $+2

$SG338 DB 'FATAL', 00H

_DATA ENDS

PUBLIC _bldErr

PUBLIC _checkStack

PUBLIC _main

_TEXT SEGMENT

_main PROC NEAR

push ebp

mov ebp, esp

mov DWORD PTR _SP, 0

call _bldErr

call _checkStack

xor eax, eax

pop ebp

ret 0

_main ENDP

_TEXT ENDS

186 Chapter 3

EXTRN _malloc:NEAR

EXTRN _strncpy:NEAR

_DATA SEGMENT

ORG $+2

$SG344 DB 'testing', 00H

_DATA ENDS

_TEXT SEGMENT

_bldErr PROC NEAR

push ebp

mov ebp, esp

push 8

call _malloc

add esp, 4

mov ecx, DWORD PTR _SP

mov DWORD PTR _stack[ecx*4], eax

push 128 ; 00000080H

call _malloc

add esp, 4

mov edx, DWORD PTR _SP

mov ecx, DWORD PTR _stack[edx*4]

mov DWORD PTR [ecx], eax

mov edx, DWORD PTR _SP

mov eax, DWORD PTR _stack[edx*4]

mov BYTE PTR [eax+4], 1

push 127 ; 0000007fH

push OFFSET FLAT:$SG344

mov ecx, DWORD PTR _SP

mov edx, DWORD PTR _stack[ecx*4]

mov eax, DWORD PTR [edx]

push eax

call _strncpy

add esp, 12 ; 0000000cH

mov ecx, DWORD PTR _SP

add ecx, 1

mov DWORD PTR _SP, ecx

pop ebp

ret 0

_bldErr ENDP

_TEXT ENDS

EXTRN _printf:NEAR

_DATA SEGMENT

$SG350 DB '%s', 0aH, 00H

$SG351 DB '%s', 0aH, 00H

_DATA ENDS

_TEXT SEGMENT

_i$ = -4

_checkStack PROC NEAR

push ebp

mov ebp, esp

push ecx

mov DWORD PTR _i$[ebp], 0

High-Level Services 187

C
h
a
p
te

r
3

jmp SHORT $L347

$L348:

mov eax, DWORD PTR _i$[ebp]

add eax, 1

mov DWORD PTR _i$[ebp], eax

$L347:

mov ecx, DWORD PTR _i$[ebp]

cmp ecx, DWORD PTR _SP

jge SHORT $L349

mov edx, DWORD PTR _i$[ebp]

mov eax, DWORD PTR _stack[edx*4]

mov ecx, DWORD PTR [eax]

push ecx

push OFFSET FLAT:$SG350

call _printf

add esp, 8

mov edx, DWORD PTR _i$[ebp]

mov eax, DWORD PTR _stack[edx*4]

xor ecx, ecx

mov cl, BYTE PTR [eax+4]

mov edx, DWORD PTR _ErrLvl[ecx*4]

push edx

push OFFSET FLAT:$SG351

call _printf

add esp, 8

jmp SHORT $L348

$L349:

mov esp, ebp

pop ebp

ret 0

_checkStack ENDP

_TEXT ENDS

END

If you look for the global variables (i.e., stack[], SP, ErrLvl),
you will notice that the compiler places them in data sections. How-
ever, one thing you might not be aware of is that the compiler also
places other various in-code constants (like the string constant
“testing”) in data sections. This prevents any sort of data from
being embedded in a code section. There are good reasons for this.
For instance, on Windows, code sections are execute-only, so there
is no way that data could be accessed if it were mixed in with the
code. The assembler will merge these three different data sections
into a single, global _DATA section when the application is built.

_DATA SEGMENT

COMM _stack:DWORD:040H

COMM _SP:DWORD

_ErrLvl DD FLAT:$SG336

188 Chapter 3

DD FLAT:$SG337

DD FLAT:$SG338

$SG336 DB 'WARN', 00H

ORG $+3

$SG337 DB 'ERROR', 00H

ORG $+2

$SG338 DB 'FATAL', 00H

_DATA ENDS

;--------------------------------------

_DATA SEGMENT

ORG $+2

$SG344 DB 'testing', 00H

_DATA ENDS

;--------------------------------------

_DATA SEGMENT

$SG350 DB '%s', 0aH, 00H

$SG351 DB '%s', 0aH, 00H

_DATA ENDS

If you look at the assembly code for any of the functions, you will
notice that they all have prologue and epilogue code to manage acti-
vation records. This is irrefutable evidence that the stack is being
used. For example, take a look at the assembly code for
checkStack():

_checkStack PROC NEAR

; prologue - set up frame pointer and allocate

local storage

push ebp

mov ebp, esp

push ecx ; makes room for 4-byte local variable "i"

;-----------------------------------

; function body implementation here

;-----------------------------------

; epilogue - reclaim local storage and reset

frame pointer

mov esp, ebp

pop ebp

ret 0

_checkStack ENDP

Finally, the heap allocation that occurs is facilitated by the
malloc() library call, which is prototyped in stdlib.h. This
may resolve to a system call behind the scenes, such that:

stack[SP]=(struct ErrData*)malloc(sizeof(struct

ErrData));

High-Level Services 189

C
h
a
p
te

r
3

becomes:

push 8 ; # bytes to allocate

call _malloc ; call malloc()

add esp, 4 ; clean up stack from call

mov ecx, DWORD PTR _SP ; set up index to access stack[]

mov DWORD PTR _stack[ecx*4], eax ; address was returned

in EAX

Before the actual library call is made, the number of bytes to be
allocated is pushed onto the stack. Once the call is over, the address
of the first byte of the allocated memory region is placed in EAX.

C has supported all of its memory features since its inception.
Stack frames and heap allocation were not extensions amended to
the language by a standards committee 10 years after the first spec-
ification was released. Instead, C was the product of a few inspired
individuals who truly understood the utility of terse and simple
language syntax. Compare the grammar of C to that of a commit-
tee-based language like COBOL. In contrast to C, COBOL is a
behemoth.

But, as Stan Lee would say, “With great power, comes great
responsibility.” C’s flexibility does not come without a price. The
very features that allow C to manage memory so effectively can also
produce disastrous consequences if they are not used correctly.
Memory leaks and dangling pointers are just two of the perils that
we have seen. The syntax of C also allows addresses to be cast and
moved around so that you might not be sure what a program is
referencing.

Here is an example of what I am talking about:

/* ---mess.c--- */

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

void function4()

{

printf("called function4()\n");

return;

}/*end function4*/

void* function3()

{

char *cptr;

cptr = malloc(16);

strcpy(cptr,"now a string");

return(cptr);

190 Chapter 3

}/*end function3*/

void* function2()

{

void *fptr;

fptr = function4;

return(fptr);

}/*end function2*/

void* function1()

{

int* iptr;

iptr = malloc(sizeof(int));

*iptr = 1012;

return(iptr);

}/*end function1*/

typedef void (*fptr)();

void main()

{

void *vptr;

fptr addr;

vptr = function1();

printf("%lu\n",(*((int*)vptr)));

vptr = function2();

addr = vptr;

(addr)();

vptr = function3();

printf("%s\n",(char *)vptr);

return;

}/*end main*/

When this program is executed, the following output is generated:

1012

called function4()

now a string

When it comes to pointers of type void, you often cannot tell what
is being referenced. The first call (i.e., function1()) returns the
address of an integer. The second call (i.e., function2()) returns
the address of a function. The third call (i.e., function3())
returns the address of a string. Without looking at the function
implementations themselves, you would have no idea what kind of
value you are dealing with.

High-Level Services 191

C
h
a
p
te

r
3

C’s simple, function-based organization can also lead to problems.
For instance, if the code base you are working with grows beyond a
million lines, it can become difficult to control. The tendency to
abuse the global nature of C functions can very quickly transform a
large project into a morass of tightly interwoven execution paths.
You might be confronted with a scenario where one function calls
another function that is a distant portion of the source code tree,
and this function calls a function that belongs to another distant
branch of the source tree. Without C being able to enforce encapsu-
lation, which it can’t, everyone can call everyone else. The resulting
spaghetti code is difficult to maintain and almost impossible to
modify.

Case Study: Java

The Java programming language originally started off as a skunk
works project at Sun Microsystems in the early 1990s. Scott
McNealy, the CEO of Sun, told James Gosling to go off somewhere
and create something brilliant. In May of 1995, Sun released the
Java SDK to the public. I can remember downloading my first copy
of the SDK in December of 1995. It had an install program that exe-
cuted from a DOS console, and the virtual machine ran on Windows
95. Heck, the first SDK didn’t even touch the Windows registry
when it installed (this is a feature I kind of miss).

NOTE Releasing a new development environment to the public
wasn’t exactly what Gosling had originally intended. According to
Patrick Naughton, one of the original Java engineers, Gosling initially
developed the Java virtual machine (JVM) to support a programming
language called Oak that was geared toward building embedded pro-
grams for consumer appliances. Thus, Java was somewhat of a
serendipitous creation.

Language Features

Java is an object-oriented (OO) language. Specifically, it is a fairly
puritanical OO language. With the exception of atomic data types,
like char or int, everything is instantiated as an object. In addi-
tion, there are no stand-alone functions in Java; every function must
belong to a class. Like other OO languages, Java supports certain
kinds of object encapsulation, polymorphism, and inheritance. How-
ever, the Java compiler (javac) also enforces a number of
conventions that make it much easier to manage large projects.

Having worked at an ERP company that maintained a code base
consisting of 16 million lines of K&R C, I dread the prospect of

192 Chapter 3

hunting down header files and obscure libraries, which were invari-
ably spread across a massive, cryptic, and completely
undocumented source tree. In the past, sometimes I would spend
several hours just trying to find one source file or function defini-
tion. There were times where I would start grep at the root of a
machine’s file system and go have lunch. In fact, I distinctly remem-
ber spending an entire afternoon trying to locate the following
macro:

#define PrcBInNdNbr 14

In case you’re wondering, this ridiculous macro stands for Process
Binary Instruction Node Number. Java eliminated this problem in
one fell swoop by enforcing a one-to-one mapping between package
names and directory names. When I discovered that Java enforced
this convention, I felt like jumping and shouting “Amen!”

Some engineers may decry the package directory naming
scheme, claiming that it is a characteristic of a bondage-discipline
language. These engineers have obviously never worked on a large
project. On a large project, you need to maintain organization, even
if it is instituted at the cost of flexibility. Sometimes, the only thing
between a million lines of code and absolute chaos is a set of
well-enforced conventions.

In the past, it has been up to the software engineers involved on
a project to be good citizens and obey the informal organizational
schemes. However, there was usually nothing stopping a program-
mer from breaking the rules and introducing complexity into the
system. Sure enough, there’s always at least one guy who has to do
things “his way.” As part of the language’s masterful design, the
founding fathers at JavaSoft decided that the Java run time would
take an active role in maintaining an organized source tree by
enforcing the package directory naming scheme.

Another design decision that the founding fathers made was to
eliminate explicit pointer manipulation. This was another wise deci-
sion. As you saw from the example in the last section, pointers are
easy to abuse. A sufficient dose of pointer arithmetic can make
source code both ambiguous and platform dependent. By allowing
only implicit references to objects, Java is able to safeguard pro-
grams from all sorts of pointer tomfoolery.

Finally, I think that Gosling had C++ in mind when he decided
that Java would not support multiple inheritance and operator over-
loading. As far as complexity is concerned, these two features tend
to make matters worse instead of making them better. There is
nothing scarier than looking at the twisting cyclic relationships that

High-Level Services 193

C
h
a
p
te

r
3

multiple inheritance can generate. It is almost as ugly as spaghetti
code. The developer is forced to compensate by using awkward
mechanisms like virtual base classes and resolution operators. Like-
wise, operator overloading tends to make source code more difficult
to interpret and understand. If you see a “+”, you cannot always be
sure if the engineer who wrote the code is talking about integer
addition or some “special” operation that might not have anything
to do with arithmetic.

NOTE Java can almost be characterized in terms of what features it
does not have, as opposed to the features it does have. By constrain-
ing the language’s features and instituting a set of additional
conventions, the architects of Java were attempting to force a certain
level of organization. Having worked with both C++ and Java, I think
that Gosling and his coworkers succeeded in doing this.

I have often listened to debates concerning the relative merits of
C++ and Java. As far as I am concerned, these two languages are
different tools used for different jobs. It is like asking, “Which is
better, a hammer or a screwdriver?” Both Java and C++ are OO
languages, but the primary distinction between them lies in their
orientation. Java, first and foremost, is an application language.
C++ works better as a system language. Java programs are com-
piled to run on a virtual machine. “Write once, run anywhere” is a
fundamental benefit of implementing a project with Java. The down-
side to this is that you cannot directly interact with native hardware.
By striving for portability, Java has isolated itself from hardware.
Building system software requires that you have the ability to insert
inline assembly code, explicitly manipulate memory, and generate a
native executable. It just so happens that C++ provides these fea-
tures. Table 3.7 summarizes the differences between C++ and
Java.

Table 3.7

Language Domain Hardware Motivation Binary Format

Java application insulate from
via virtual
machine

portability
abstraction

bytecode

C++ system
software

intimate access
to native CPU

control
flexibility

native format

Virtual Machine Architecture

Java applications are compiled to run on a virtual machine. The Java
virtual machine (JVM) provides high-level memory services to Java

194 Chapter 3

applications. Thus, to understand how Java applications use mem-
ory, we must first understand the operation of the virtual machine.

In terms of the virtual machine’s artificial environment, the
memory components that the virtual machine provides for Java
applications can be divided into two categories: system-wide
resources and thread-specific resources (see Figure 3.16).

A Java application consists of one or more executing threads.
System-wide resources can be accessed by all of an application’s
thread. The primary system-wide memory components are the
JVM’s heap and the method area.

The heap is a large chunk of memory that is used to supply storage
for object instantiation. Every time that a new object is created,
space on the heap is allocated. The heap is supposed to be super-
vised by an automatic memory manager. Unfortunately, the JVM
specification does not go any further than this. The engineer con-
structing a JVM has to decide which garbage collection algorithm to
use and how to implement that algorithm.

The method area is a mixture between a code section and a static
data section. Each class stores the bytecode instructions to its
methods in this area. In addition, each class stows its run-time con-
stant pool and field/method metadata in the method area. A constant
pool stores, among other things, compile-time literals and indices
used to reference other methods/fields.

Each thread has a program counter (PC), its own virtual machine
stack. A thread may also possess zero or more native machine
stacks to handle native method execution. The program counter is
very much like Intel’s EIP register. It points to the index of the

High-Level Services 195

C
h
a
p
te

r
3

Figure 3.16

bytecode instruction being executed by the thread. If native code is
being executed instead of bytecode, the program counter’s value is
undefined.

Each thread has its own stack to provide support for activation
records. The JVM spec refers to activation records as frames, as in
stack frames. As usual, frames are utilized to provide storage for
function arguments, local variables, and return values.

Java Memory Management

A Java application uses the heap and its own private stack for
dynamic memory needs. Specifically, an object’s field values are
stored in its memory region located in the heap. An object’s method
implementations are stored in the method area. An object’s local
storage is provided by its private stack frame. Any other static data
is placed in a constant pool of the object’s corresponding class in the
method area. Table 3.8 provides a summary of how Java applications
use the different high-level services provided by the virtual
machine.

Table 3.8

Object Element Storage Space

fields system-wide heap

methods system-wide method area

local variables thread stack

arguments thread stack

return value thread stack

return address thread stack

static data (i.e., literals) system-wide method area, constant pool

Objects are really just the sum of their field values. Two different
objects of the same type can share the same method area because it
is their field values that distinguish them. To give you a feel for this,
the following code shows how you could implement this type of
setup in C:

/* --objects.c-- */

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

struct MyObject

{

int value;

char name[16];

196 Chapter 3

};

struct MyObject *constructor()

{

return((struct MyObject*)malloc(sizeof(struct

MyObject)));

}/*end constructor*/

void setValues(struct MyObject *ptr, int val, char *str)

{

(*ptr).value = val;

strcpy((*ptr).name,str);

return;

}/*end setValues*/

void toString(struct MyObject *ptr)

{

printf("value=%d, name=%s\n",(*ptr).value,

(*ptr).name);

return;

}/*end constructor*/

void main()

{

struct MyObject *obj1;

struct MyObject *obj2;

obj1 = constructor();

setValues(obj1,5,"object1");

toString(obj1);

obj2 = constructor();

setValues(obj2,6,"object2");

toString(obj2);

return;

}/*end main*/

If this program is executed, the following output will be produced:

value=5, name=object1

value=6, name=object2

The objects in this case are collections of fields (i.e., structures).
They both use the same member functions (i.e., constructor(),
setValues(), toString()), but they are different because
their fields are different.

The best way to see how a Java application uses memory ser-
vices in practice is to take a small Java program, disassemble it, and
examine its bytecode entrails. Consider the following Java program

High-Level Services 197

C
h
a
p
te

r
3

that consists of a single thread of execution. Both the heap and
stack are utilized.

public class MemDemo

{

public int[] array;

public int sum;

public MemDemo(int size)

{

array = new int[size];

return;

}/*end constructor*/

public int demoFrameUsage(int first)

{

int i;

int j;

sum = 0;

for(i=0;i<array.length;i++)

{

array[i]=first;

first++;

sum = sum+array[i];

}

return(sum);

}/*end demoFrameUsage*/

public static void main(String[] args)

{

MemDemo md = new MemDemo(11);

System.out.println("sum="+md.demoFrameUsage(1));

return;

}/*end main*/

}

When this application is executed, the following output is produced:

C:\j2sdk1.4.0\src>SET

CLASSPATH=C:\j2sdk1.4.0\src;%CLASSPATH%

C:\j2sdk1.4.0\src>javac MemDemo.java

C:\j2sdk1.4.0\src>java MemDemo

sum=66

NOTE Do not forget to include the current working directory in your
CLASSPATH environmental variable when you run the previous code.

Now I will look at each method of MemDemo.java in chronological
order and analyze the corresponding bytecode instructions. To gen-
erate the necessary bytecode, I used the javap tool that ships with
the Java 2 SDK. You will need to pass javap the name of the class

198 Chapter 3

file without an extension. The following command line disassembles
MemDemo.class:

C:\j2sdk1.4.0\src>javap -c MemDemo

Instruction opcodes that are prefixed by a hash sign (i.e., “#”) rep-
resent indices into the run-time constant pool. The item that the
index references is placed in brackets to the right of the instruction
(i.e., <Method Memdemo(int)>). I will also sprinkle the assem-
bler with single- and double-line comments to help explain what is
going on.

Execution begins in the main() method:

public static void main(String[] args)

{

MemDemo md = new MemDemo(11);

System.out.println("sum="+md.demoFrameUsage(1));

return;

}/*end main*/

Method void main(java.lang.String[])

0 new #4 <Class MemDemo> //create an object, don't initialize

3 dup //duplicate top operand, push on stack

4 bipush 11 //push argument (11) on stack

6 invokespecial #5 <Method MemDemo(int)> //initialize object we

just created

9 astore_1 //save reference to md object

10 getstatic #6 <Field java.io.PrintStream out>//get static

field from class

13 new #7 <Class java.lang.StringBuffer> //create StringBuffer

object

16 dup //duplicate top operand, push on stack

17 invokespecial #8 <Method java.lang.StringBuffer()>

//initialize

StringBuffer

20 ldc #9 <String "sum="> //push reference to literal on stack

22 invokevirtual #10 <Method java.lang.StringBuffer append(java.

lang.String)>

25 aload_1 //push reference to md on stack

26 iconst_1 //push argument (1) on stack

/* rest of these instructions handle System.out.println()

statement*/

27 invokevirtual #11 <Method int demoFrameUsage(int)>

30 invokevirtual #12 <Method java.lang.StringBuffer append(int)>

33 invokevirtual #13 <Method java.lang.String toString()>

High-Level Services 199

C
h
a
p
te

r
3

36 invokevirtual #14 <Method void println(java.lang.String)>

39 return

The first function that is invoked from main() is the constructor
for MemDemo(). Let’s take a look at its Java code and the associ-
ated bytecode assembler. All of the push instructions are nothing
but setup work for the non-push instructions.

public MemDemo(int size)

{

array = new int[size];

return;

}/*end constructor*/

Method MemDemo(int)

0 aload_0 //push reference to 'this' on stack

1 invokespecial #1 <Method java.lang.Object()> //call superclass

constructor

4 aload_0 //push reference to 'this' on stack

5 iload_1 //push 'size' on stack

6 newarray int //create an integer array object

8 putfield #2 <Field int array[]> //set array field for 'this'

object

11 return

After MemDemo() has returned, the demoFrameUsage() method
is invoked next. Let’s take a look at its Java code and the associated
bytecode assembler. As before, most of the push instructions are
setups for other instructions.

public int demoFrameUsage(int first)

{

int i;

int j;

sum = 0;

for(i=0;i<array.length;i++)

{

array[i]=first;

first++;

sum = sum+array[i];

}

return(sum);

}/*end demoFrameUsage*/

Method int demoFrameUsage(int)

0 aload_0 //push 'this' reference on stack

1 iconst_0 //push 0 on to stack

2 putfield #3 <Field int sum> //set 'sum' field to 0

5 iconst_0 //push 0 onto stack

6 istore_2 //pop 0 into variable 'i'

7 goto 38 //jump to bytecode index 38

200 Chapter 3

10 aload_0 //push 'this' reference on stack

11 getfield #2 <Field int array[]> //push reference to 'array'

on stack

14 iload_2 //push value of 'i' on stack

15 iload_1 //push value of 'first' on stack

16 iastore //store 'first' in array[i]

17 iinc 1 1 //increment 'first' by 1

20 aload_0 //push 'this' reference on stack

21 aload_0 //push 'this' reference on stack

22 getfield #3 <Field int sum> //push value of 'sum' on stack

25 aload_0 //push 'this' reference on stack

26 getfield #2 <Field int array[]> //push reference to 'array'

on stack

29 iload_2 //push value of 'i' on stack

30 iaload //push array[i] onto stack

31 iadd //add 'sum' to 'array[i]', push

on stack

32 putfield #3 <Field int sum> //set 'sum' field to new value

35 iinc 2 1 //increment 'i' by 1

38 iload_2 //push value of 'i' on stack

39 aload_0 //push 'this' reference on stack

40 getfield #2 <Field int array[]> //push reference to 'array'

on stack

43 arraylength //get length of array[]

44 if_icmplt 10 //if 'i' < array.length, goto

index 10

47 aload_0 //push 'this' reference on stack

48 getfield #3 <Field int sum> //push value of 'sum' on stack

51 ireturn //push value on invoker's frame,

return

To summarize what has happened, we started in main(), where an
object of type MemDemo is allocated off the heap. The thread’s stack
is used to pass the integer argument (11) to the constructor of
MemDemo. Within the constructor, the heap is used again to allocate
an integer array. The call to demoFrameUsage() makes ample
use of the stack to support an argument, local variables, and a
return value. The value returned by demoFrameUsage() and a
string literal reference are used to supply a string argument to
System.out.println() using the stack. (See Figure 3.17.)

NOTE If you are interested in the specifics of a certain bytecode
instruction, you should take a look at the JVM specification. It is distrib-
uted by Sun Microsystems as an aid to help third parties construct a
clean-room implementation of the JVM. The JVM specification is the
final word as to the functionality that a JVM has to provide.

High-Level Services 201

C
h
a
p
te

r
3

Memory Management:
The Three-layer Cake

You have just spanned the spectrum of memory services that a com-
puter provides. The previous chapters have been relatively dense,
and it would be easy to let the details overwhelm you. To help illu-
minate the big picture, I am going to dedicate this section to pulling
everything together.

Memory management occurs at three levels. In the basement
lies the processor. The processor provides a set of system registers
(i.e., GDTR) and dedicated instructions (i.e., LGDTR) that support
the construction of memory management data structures. These
data structures include descriptor tables, page directories, and page
tables. The processor cannot actually create these data structures;
instead, it merely supports their creation and use.

Upstairs, on the street level, is the operating system. The oper-
ating system is responsible for taking the raw materials provided by
the hardware and constructing an actual memory management
implementation. The operating system has to decide which proces-
sor features to use and to what extent. For example, both
segmentation and paging can be used to institute memory protec-
tion. The Intel Pentium supports four levels of privilege for memory

202 Chapter 3

Figure 3.17

segments via the DPL field in descriptor table entries and two lev-
els of privilege for paging via the Supervisor/User flag in page table
entries. All three of the protected mode operating systems that we
looked at in Chapter 2 used paging as the primary mechanism to
implement privilege and access protocols.

Several floors up, sunning themselves on the balcony of a pent-
house suite, are the user applications. User applications have it
easy. They are insulated from the ugly details of memory manage-
ment that occur down in the boiler room. When a user application
needs memory, it sends a request to the operating system through a
third party known as the system call interface. Why leave the pent-
house for dinner when you can have the butler pick it up?

User applications view their own address space in terms of a set
of memory regions. Most applications can see a stack, heap, data
section, and code section. The extent to which they use these
regions is determined both by the development tools being used
and the run-time libraries that the applications invoke. As we saw in
this chapter, older languages tend to possess very primitive mem-
ory models. Languages like COBOL 85 and F77 really only use a
code section and a static data section. Contemporary languages, like
Java, have very sophisticated memory models that make heavy use
of the heap and stacks.

The “three-layer cake” of memory management is displayed in
Figure 3.18.

High-Level Services 203

C
h
a
p
te

r
3

Figure 3.18

References

ANSI, X3.23-1985 (R1991), Programming Languages — COBOL.
This is the COBOL 85 ANSI standard; when someone talks

about ANSI COBOL, they are referring to this standard and the
1989 amendments.

ANSI, X3.23b-1993 (R1998), amendment to ANSI X3.23-1985,
updated with ANSI X3.23a-1989.

ANSI/ISO/IEC 1539-1:1997, Programming languages — Fortran —
Part 1: Base language.

This is the most recent FORTRAN specification.

ANSI, ISO/IEC 9899:1999, Programming languages — C.
This is the most recent C specification.

Baroudi, Carol. Mastering Cobol. 1999, Sybex, ISBN: 078212321X.
According to Carol, there are 500 billion lines of COBOL code

in existence. Unfortunately, she does not reference her sources
(bad move). I believe that the Gartner Group’s figure of 180 bil-
lion has more credibility.

Cooper, Doug. Oh! Pascal. 1993, W.W. Norton & Company, ISBN:
0393963985.

Diwan, A., D. Tarditi, and E. Moss. Memory Subsystem Performance

of Programs with Intensive Heap Allocation. 1993, Carnegie
Mellon University, Technical Report CMU-CS-93-227.

Graham, Paul. ANSI Common LISP. 1995, Prentice Hall, ISBN:
0133708756.

Joy, B. (Ed.), G. Steele, and J. Gosling. The Java Language Specifica-

tion. 2000 Addison-Wesley, ISBN: 0201310082.

Lindholm, T. and F. Yellin. The Java Virtual Machine Specification.

1999, Addison-Wesley; ISBN: 0201432943.
For a specification, and I have waded through many, this one is

not too difficult to digest. Still, you might want to have Meyer
and Downing’s book sitting next to you.

Metcalf, M. and J. Reid. Fortran 90/95 Explained. 1999, Oxford Uni-
versity Press, ISBN: 0198505582.

Meyer, J. and T. Downing. Java Virtual Machine. 1997, O’Reilly &
Associates, ISBN: 1565921941.

This is an excellent companion to the actual JVM specification.

204 Chapter 3

Microsoft. Programmer’s Guide, Microsoft MASM. 1992, Microsoft
Corp., Document No. DB35747-1292.

This is not a book for beginners, primarily due to the way that
it is organized and presented. However, it is still a good reference
if you know what you are looking for. The one complaint that I
have about this book is that it invests little or no effort in explain-
ing protected mode assembler. Most of the book is devoted to
real mode topics. Considering that almost every application cur-
rently being written on Windows is a 32-bit protected mode
application, I find this horribly negligent.

Naughton, Patrick. The Java Handbook. 1996, McGraw-Hill Profes-
sional Publishing, ISBN: 0078821991.

The last section of this book includes an engrossing personal
recount of Java’s creation by one of the principal engineers.

Ritchie, Dennis M. The Evolution of the Unix Time-sharing System.

AT&T Bell Laboratories Technical Journal 63 No. 6 Part 2, Octo-
ber 1984, pp. 1577-93.

Ritchie, Dennis M. The Development of the C Language. 1993, Asso-
ciation for Computing Machinery.

Tanenbaum, A. and A. Woodhull. Operating Systems: Design and

Implementation. 1997, Prentice Hall, ISBN: 0136386776.

Zorn, Benjamin. The Measured Cost of Conservative Garbage Collec-

tion. 1992, University of Colorado at Boulder, Technical Report,
CU-CS-573-92.

This is the original paper that touts the BDW garbage collector
as having “comparable” performance relative to malloc() and
free(). You can crank through the numbers yourself to see
what “comparable” means.

Zorn, B. and D. Grunwald. Empirical Measurements of Six Alloca-

tion-Intensive C Programs. 1992, University of Colorado at Boul-
der, Technical Report, CU-CS-604-92.

This paper looks at the allocation behavior of Cfraq, Espresso,
GhostScript, Gnu Awk, Perl, and Chameleon.

Zorn, B., D. Detlefs, and A. Dosser. Memory Allocation Costs in

Large C and C++ Programs. 1993, University of Colorado at
Boulder, Technical Report, CU-CS-665-93.

This is another paper that looks at the comparable perfor-
mance of garbage collectors.

High-Level Services 205

C
h
a
p
te

r
3

Chapter 4

Manual Memory
Management

Managing memory in the heap is defined by the requirement that
services be provided to allocate and deallocate arbitrary size blocks
of memory in an arbitrary order. In other words, the heap is a
free-for-all zone, and the heap manager has to be flexible enough to
deal with a number of possible requests. There are two ways to
manage the heap: manual and automatic memory management. In
this chapter, I will take an in-depth look at manual memory manage-
ment and how it is implemented in practice.

Replacements for malloc() and free()

Manual memory management dictates that the engineer writing a
program must keep track of the memory allocated. This forces all of
the bookkeeping to be performed when the program is being
designed instead of while the program is running. This can benefit
execution speed because the related bookkeeping instructions are
not placed in the application itself. However, if a programmer makes
an accounting error, they could be faced with a memory leak or a
dangling pointer. Nevertheless, properly implemented manual mem-
ory management is lighter and faster than the alternatives. I
provided evidence of this in the previous chapter.

In ANSI C, manual memory management is provided by the
malloc() and free() standard library calls. There are two other
standard library functions (calloc() and realloc()), but as we
saw in Chapter 3, they resolve to calls to malloc() and free().

I thought that the best way to illustrate how manual memory
management facilities are constructed would be to offer several dif-
ferent implementations of malloc() and free(). To use these
alternative implementations, all you will need to do is include the

207

appropriate source file and then call newMalloc() and
newFree() instead of malloc() and free(). For example:

#include<mallocV1.cpp>

void main()

{

char *cptr;

initMemMgr();

cptr = newMalloc(10);

if(cptr==NULL){ printf("allocation failed!\n"); }

newFree(cptr);

closeMemMgr();

return;

}

The remainder of this chapter will be devoted to describing three
different approaches. In each case, I will present the requisite back-
ground theory, offer a concrete implementation, provide a test
driver, and look at associated trade-offs. Along the way, I will also
discuss performance measuring techniques and issues related to
program simulation.

System Call Interface and Porting Issues

The C standard library malloc() and free() functions are pro-
cedures that execute in user mode. Inevitably, they rely on native
library routines to do the actual dirty work of allocating and releas-
ing memory. The native libraries, in turn, make use of the system
call gate to access system calls that reside in kernel mode. This
dance step is displayed in Figure 4.1.

208 Chapter 4

Figure 4.1

The specific native library functions that malloc() and free()
invoke will differ from one operating system to the next. On UNIX
platforms, malloc() and free() end up invoking the brk()
system call through its native library wrapper function, sbrk().
Figure 4.2 shows an example of how this works in MINIX.

Because I am developing on Windows, instead of sbrk() I will be
using the Win32 HeapXXX() functions to act as my touch point to
the kernel. Here are the specific Win32 routines that I will be
invoking:

HANDLE GetProcessHeap(VOID);

LPVOID HeapAlloc(HANDLE hHeap, DWORD dwFlags, DWORD dwBytes);

LPVOID HeapReAlloc(HANDLE hHeap, DWORD dwFlags, LPVOID lpMem,

DWORD dwBytes);

BOOL HeapFree(HANDLE hHeap, DWORD dwFlags, LPVOID lpMem);

Here is a short example to give you a feel for how these functions
are utilized. In the following example, I allocate a 2MB heap and
populate it with the letter “a.” Then I increase the size of the heap
by 1MB (without moving the original memory block) and repopulate
it all with “a.”

/* --heapDemo.c-- */

#include<stdio.h>

#include<windows.h>

#define MB 1048576

#define U1 unsigned char

#define U4 unsigned long

void main()

{

HANDLE handle;

U4 *ptr;

U1 *cptr;

Manual Memory Management 209

C
h
a
p
te

r
4

Figure 4.2

int i;

handle = GetProcessHeap();

if(handle==NULL)

{

printf("could not get heap handle\n");

return;

}

/*allocate and fill 2MB with 'a' character----------------*/

ptr = HeapAlloc(handle,HEAP_ZERO_MEMORY,2*MB);

if(ptr==NULL)

{

printf("HeapAlloc() failed\n");

return;

}

printf("address=%p\n",ptr);

printf("size=%lu\n",HeapSize(handle,HEAP_NO_SERIALIZE,ptr));

cptr = (U1*)ptr;

for(i=0;i<2*MB;i++){ cptr[i] = 'a'; }

/*increase heap by 1MB but do NOT move and fill with 'a'--*/

ptr = HeapReAlloc(handle,HEAP_REALLOC_IN_PLACE_ONLY,

ptr,3*MB);

if(ptr==NULL)

{

printf("HeapAlloc() failed\n");

return;

}

printf("address=%p\n",ptr);

printf("size=%lu\n",HeapSize(handle,HEAP_NO_SERIALIZE,ptr));

cptr = (U1*)ptr;

for(i=0;i<3*MB;i++){ cptr[i] = 'a'; }

/*set the heap free---------------------------------------*/

if(HeapFree(handle,HEAP_NO_SERIALIZE,ptr)==0)

{

printf("HeapFree() failed\n");

return;

}

210 Chapter 4

return;

}

NOTE I decided on Windows because it is the most accessible plat-
form. Everyone and his brother has at least one Windows box sitting
around somewhere. The documentation for Windows is better also.
Linux and BSD variants tend to require a little more investment in
terms of the learning curve, so I decided on Windows in an effort to
keep the audience as broad as possible.

If you value portability above more direct access to the kernel, you
could probably get away with using malloc() to allocate yourself a
large “heap,” though (see Figure 4.3) this would add an extra layer
of code between the memory management that I am going to imple-
ment and the operating system.

Keep It Simple...Stupid!

My goal in this chapter is to help you learn how to implement your
own manual memory management code. I could have very easily
gotten sidetracked with optimization, and my code would have
quickly become very hard to read (if not impossible). If you want to
see what I mean, go look at the malloc.c code for the Gnu Com-
piler Collection. It should keep you occupied for a couple of hours,
or maybe a day or two.

Hence, I had to strike a balance between performance and com-
prehension. I have decided, in the interest of keeping the learning
threshold low, that I would keep my source code as simple as possi-

ble. I will not try to impress you with syntactic acrobatics. Instead, I
intend to show you the basic idea so that you can “get it” without
seven hours of frustrating rereading. Having perused several
malloc() implementations myself, I know how demoralizing it
can be to have to decipher optimized code.

Manual Memory Management 211

C
h
a
p
te

r
4Figure 4.3

I also make the assumption that this chapter’s code will be exe-
cuting in a single-threaded environment. I know that some members
of the reading audience may be gasping at my negligence. Again, I
want to focus on memory management without being distracted by
complicated synchronization issues. Once you have a working
knowledge under your belt, you can add all the amenities. I will
leave it as an exercise to the reader to make everything thread safe.

Measuring Performance

Given that I have decided to error on the side of simplicity, it would
be interesting to see what it costs me in terms of performance rela-
tive to a commercial implementation of malloc() and free().
Although marketing people will barrage you with all sorts of
obscure metrics when they are trying to sell you something, mea-
suring performance is really not that complicated, as you will see.

The Ultimate Measure: Time

According to John Hennessy and David Patterson in their book
Computer Architecture: A Quantitative Approach, there is one true
measure of performance: execution time. In other words, how long
did it take for an event to transpire from the moment it started to
the moment it completed? Execution time is also known as wall

clock time, or response time.

NOTE There are other measures of performance that you may see
in literature, like MIPS (millions of instructions per second) and
MFLOPS (million floating-point operations per second), but these are
poor metrics that can lead to confusing comparisons. For an explana-
tion of why, see Patterson and Hennessey’s book.

Naturally, there are ways to slice and dice execution time. You can
measure how much time the processor itself spends executing a
program. This may be a pertinent value if you are working on a
multitasking operating system. If you are executing a program on a
machine that is carrying a heavy load of tasks, the program under
observation may appear to run more slowly (via wall clock time)
even if it is actually running faster.

You can subdivide processor time into how much time the pro-
cessor spends executing a task in user mode and how much time
the processor spends executing a task in kernel mode. Encryption
programs spend most of their time in user space crunching num-
bers, while I/O-intensive programs spend most of their time in
kernel space interacting with the hardware.

212 Chapter 4

NOTE Given that time is such a useful performance metric, what
exactly is it? According to Einstein, “Time is that which is measured by
a clock.” While this is correct, it is not really satisfying. Another possi-
ble definition lies in the nature of light; you could define one second
as the amount of time it takes a photon in a vacuum to travel 3x108

meters. Again, this still may not give you a concise enough definition.
There is a story of a foreign student who once asked a professor at
Princeton, “Please, sir, what is time?” The professor responded by say-
ing, “I am afraid I can’t tell you; I am a physics professor. Maybe you
should ask someone in the philosophy department.”

Unfortunately, a time measurement in and of itself really doesn’t tell
you everything. This is because time measurements are context
sensitive. Telling someone that a program took 300 milliseconds to
execute doesn’t give them the entire picture. The execution time of
a program is dependent upon many things, including:

� The hardware that the program ran on

� The algorithms that the program used

� The development tools used to build the program

� The distribution of the data that the program operated on

The time measurements that I collected in this chapter were gener-
ated by programs running on a 700 MHz Pentium III. All of the
programs were built using Visual Studio 6.0. Each implementation
uses a different algorithm in conjunction with a data distribution
that, I will admit, is slightly artificial. The system that I worked on
was a single-user Windows 2000 machine with a bare minimum
number of running tasks.

My hope, however, is not that the individual measurements will
mean anything by themselves. Rather, I am more interested in see-
ing how the different algorithms compare to each other. You should
notice a time differential between algorithms, as long as the other
three independent variables (hardware, tools, data) are held con-
stant. This time differential is what is important.

ANSI and Native Time Routines

In order to determine the execution time of a program, you will
need to take advantage of related library calls. There are two stan-
dard ANSI C functions declared in the time.h header file that can
be applied to this end:

clock_t clock();

time_t time(time_t *tptr);

The time() function returns the number of seconds that have
occurred since the epoch. The epoch is an arbitrary reference point;

Manual Memory Management 213

C
h
a
p
te

r
4

in most cases, it is January 1, 1970 (00:00:00). The problem with the
time() function is that it works with time units that do not pos-
sess a fine enough granularity. Most important application events
occur on the scale of milliseconds, microseconds, or even
nanoseconds.

The clock() function returns the number of system clock ticks
that have occurred since a process was launched. The number of
ticks per second is defined by the CLOCKS_PER_SEC macro. This
value will vary from one hardware platform to the next, seeing as
how it is a processor-specific value.

The Win32 API provides a routine called GetTickCount()
that returns the number of milliseconds that have passed since the
operating system was booted. I decided to use this function to time
my code. If you are more interested in writing portable code, you
might want to use clock().

Here is a short example that demonstrates how all three of these
functions are used in practice:

/* --ansiTime.c-- */

#include<stdio.h>

#include<time.h>

#include<windows.h>

void main()

{

unsigned long i;

time_t t1,t2;

clock_t ticks1,ticks2, dt;

unsigned long msec1,msec2;

time(&t1);

ticks1 = clock();

msec1 = GetTickCount();

/*do some work*/

for(i=0;i<0xFFFFFFFF;i++){}

time(&t2);

ticks2 = clock();

msec2 = GetTickCount();

printf("number of elapsed seconds = %lu\n",t2-t1);

dt = ticks2-ticks1;

printf("number of clock ticks = %lu\n",dt);

printf("ticks/second = %lu\n",CLOCKS_PER_SEC);

214 Chapter 4

printf("number of elapsed seconds = %lu\n",

dt/CLOCKS_PER_SEC);

printf("msecs=%lu\n",msec2-msec1);

return;

}

If this program is built and run, the following type of output will be
generated:

number of elapsed seconds = 31

number of clock ticks = 30980

ticks/second = 1000

number of elapsed seconds = 30

msecs=30960

The Data Distribution: Creating Random Variates

To test the performance of my manual memory managers, I will
need to run them through a lengthy series of allocations and deallo-
cations. Naturally, I cannot simply allocate memory blocks that all
have the same size.

#include<stdlib.h>

void main()

{

unsigned int i,j;

unsigned int nblocks;

unsigned int nbytes;

unsigned char* ptrs[1024];

nbytes=4096;

nblocks=1024;

for(i=0;i<nblocks;i++)

{

ptrs[i]=malloc(nbytes);

for(j=0;j<nbytes;j++)

{

char *cptr;

cptr = ptrs[i];

cptr[j] = 'a';

}

}

for(i=0;i<nblocks;i++)

{

free(ptrs[i]);

}

return;

}

Manual Memory Management 215

C
h
a
p
te

r
4

The previous program does not force a manager to deal with the
arbitrary requests that a heap manager normally encounters. This
kind of test is unrealistic.

On the other hand, a completely random series of allocations is
also not very realistic.

#include<stdlib.h>

void main()

{

unsigned int i,j;

unsigned int nblocks;

unsigned int nbytes;

unsigned char* ptrs[1024];

nblocks=1024;

for(i=0;i<nblocks;i++)

{

nbytes=rand();

ptrs[i]=malloc(nbytes);

for(j=0;j<nbytes;j++)

{

char *cptr;

cptr = ptrs[i];

cptr[j] = 'a';

}

}

for(i=0;i<nblocks;i++)

{

free(ptrs[i]);

}

return;

}

NOTE Another problem with both of the previous examples is that
memory is released in the exact order in which it is allocated. It would
be a bad move to assume that this type of behavior could be expected.

High-grade memory managers usually try to take advantage of reg-
ularities that exist in executing programs. If there are patterns,
special steps can be instituted to exploit those patterns and benefit
overall performance. Random data destroys regularity. This can lead
to incorrect performance evaluations because a memory manager
that does successfully take advantage of regularities will not be able
to flex its muscles. On the same note, a memory manager that does
a poor job of exploiting patterns will be able to hide its weakness
behind the random allocation stream.

216 Chapter 4

This leads me to a dilemma. I cannot use a series of fixed-sized
memory block requests, and I cannot use a random stream of alloca-
tion requests. I need to create a synthetic stream of allocation
requests and release requests that are reasonably random but still
exhibit a basic element of regularity. The caveat is that, although
programs can demonstrate regular behavior, there are an infinite
number of programs that a manual memory manager might con-
front. What type of allocation behavior is the most likely?

This is where I threw my hands up and decided to use a stream of
allocation requests that followed a specific discrete probability dis-
tribution. This allowed me to weight certain types of memory
requests, although it also forced me to decide on a certain type of
allocation behavior (i.e., one that might not be realistic).

I decided to use the following discrete probability distribution to
model allocation requests:

Table 4.1

(x) Size of Allocation in Bytes (P(x)) Probability

16 .15 = p1

32 .20 = p2

64 .35 = p3

128 .20 = p4

256 .02 = p5

512 .04 = p6

1024 .02 = p7

4096 .02 = p8

Visually, this looks like what is displayed in Figure 4.4.

I will admit that this distribution is somewhat arbitrary. To actually
generate random numbers that obey this distribution, I use an

Manual Memory Management 217

C
h
a
p
te

r
4

Figure 4.4

algorithm that is based on what is known as the inverse transform

method.

1. Generate a uniform random number, U, between 0 and 1.

2. If U < p1 = .15, set allocation to 16 bytes and go to step 10.

3. If U < p1+p2 = .35, set allocation to 32 bytes and go to step
10.

4. If U < p1+p2+p3 = .70, set allocation to 64 bytes and go to
step 10.

5. If U < p1+p2+p3+p4 = .90, set allocation to 128 bytes and go
to step 10.

6. If U < p1+p2+p3+p4+p5 = .92, set allocation to 256 bytes and
go to step 10.

7. If U < p1+p2+p3+p4+p5+p6 = .96, set allocation to 512 bytes
and go to step 10.

8. If U < p1+p2+p3+p4+p5+p6+p7 = .98, set allocation to 1024
bytes and go to step 10.

9. Set allocation to 4096 bytes and go to step 10.

10. Stop.

This algorithm is based on being able to generate a uniform random
number between 0 and 1. In other words, I must be able to generate
a random number that is equally likely to be anywhere between 0
and 1. To do this, I use the following function:

double getU()

{

return(((double)rand())/((double)RAND_MAX));

}/*end getU*/

This code invokes the rand() function located in the C standard
library. The rand() function generates what is known as a pseudo-

random integer in the range 0 to RAND_MAX. A pseudorandom
number is one that is generated by a mathematical formula. A
well-known formula for creating random integer values is the Lin-
ear Congruential Generator (LCG), which makes use of a recursive
relationship:

xn+1 = (axn + b)mod m for n = 0, 1, 2, 3, …

For example, if we pick a=5, b=3, m=16, and x0=3, we will obtain
the following stream of values:

x0 = 3, x1 = 2, x2 = 13, x3 = 4, …

218 Chapter 4

The value x0 is known as the seed. One thing you should know about
LCGs is that they eventually begin to repeat themselves. In gen-
eral, the constants that are chosen (i.e., a, b, and m) make the
difference between a good and a bad LCG. According to Knuth, a
good LCG is:

(3141592653xn + 2718281829)mod 235 x0 = 0

Because the formula allows us to determine what the next number
is going to be, the numbers are not truly random. However, the for-
mula guarantees that generated values will be evenly distributed
between 0 and RAND_MAX, just like a long series of values that are
actually uniformly random. The fact that these formula-based num-
bers are not really random, in the conventional sense, is what led
John Von Neumann to proclaim the following in 1951:

“Anyone who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin.”

NOTE The LCG technique for creating random numbers was discov-
ered by Dick Lehmer in 1949. Lehmer was a prominent figure in the
field of computational mathematics during the twentieth century. He
was involved with the construction of ENIAC, the first digital computer
in the United States, and was also the director of the National Bureau
of Standards’ Institute for Numerical Analysis.

Testing Methodology

Each memory manager that I implement will be subjected to two
tests: a diagnostic test and a performance test.

If you modify any of the source code that I provide, you may want
to run the diagnostic test to make sure that everything still operates
correctly. The goal of a diagnostic test is to examine the operation of
a component, so it will necessarily execute much more slowly than
a performance test. Once a memory manager has passed its diag-
nostic test, it can be barraged with a performance test.

Performance testing will be executed by an instantiation of the
PerformanceTest class. The class is used as follows:

double p[8] = {.15, .20, .35, .20, .02, .04, .02, .02};

unsigned long x[8] = {16,32,64,128,256,512,1024,4096};

struct TestData td;

td.dptr = p;

td.lptr = x;

td.samplesize = 1024;

td.length = 8;

Manual Memory Management 219

C
h
a
p
te

r
4

PerformanceTest pt = PerformanceTest(&td);

printf("milli-seconds=%lu\n",pt.runTest());

The PerformanceTest class, mentioned in the previous code
snippet, has the following implementation:

/* --perform.cpp-- */

/*holds setup data to pass to constructor*/

struct TestData

{

double *dptr; // probability array

unsigned long *lptr; // allocation sizes

unsigned long samplesize; // # malloc() calls

unsigned long length; // size of arrays

};

class PerformanceTest

{

public:

PerformanceTest(struct TestData *tdptr);

unsigned long runTest();

private:

unsigned long nAllocations; // # of malloc() calls to make

unsigned long arraySize; // size of P(x) and x arrays

double *p; // P(x) = probability for X=x

unsigned long *x; // X = # bytes allocated

double getU();

unsigned long getRandomVariate();

void getAllocArray(unsigned long *lptr);

};

PerformanceTest::PerformanceTest(struct TestData *tdptr)

{

p = (*tdptr).dptr;

x = (*tdptr).lptr;

nAllocations = (*tdptr).samplesize;

arraySize = (*tdptr).length;

return;

}/*end constructor--*/

double PerformanceTest::getU()

{

return(((double)rand())/((double)RAND_MAX));

}/*end getU---*/

220 Chapter 4

unsigned long PerformanceTest::getRandomVariate()

{

double U;

unsigned long i;

double total;

U = getU();

for(i=0,total=p[0];i<=arraySize-2;i++)

{

if(U<total){ return(x[i]); }

total = total + p[i+1];

}

return(x[arraySize-1]);

/*

the above is a cleaner/slower way of doing something like:

if(U < p[0]){return(x[0]);}

else if(U <(p[0]+p[1])){return(x[1]);}

else if(U <(p[0]+p[1]+p[2])){return(x[2]);}

else if(U <(p[0]+p[1]+p[2]+p[3])){return(x[3]);}

else if(U <(p[0]+p[1]+p[2]+p[3]+p[4])){return(x[4]);}

else if(U <(p[0]+p[1]+p[2]+p[3]+p[4]+p[5])){return(x[5]);}

else if(U <(p[0]+p[1]+p[2]+p[3]+p[4]+p[5]+p[6]))

{return(x[6]);}

else{ return(x[7]);}

*/

}/*end getRandomVariate---------------------------------------*/

void PerformanceTest::getAllocArray(unsigned long *lptr)

{

unsigned long i;

for(i=0;i<nAllocations;i++)

{

lptr[i]=getRandomVariate();

}

return;

}/*end getAllocationArray-------------------------------------*/

unsigned long PerformanceTest::runTest()

{

unsigned long *allocs;

unsigned long i;

unsigned long ticks1,ticks2;

Manual Memory Management 221

C
h
a
p
te

r
4

char **addr; /*pointer to an array of pointers*/

/*create array of address holders to stockpile

malloc() returns*/

addr = (char **)malloc(sizeof(char *)*nAllocations);

if(addr==NULL)

{

printf("could not allocate address repository\n");

exit(1);

}

/*create stream of allocation values*/

allocs = (unsigned long *)malloc(sizeof(long)*nAllocations);

if(allocs==NULL)

{

printf("could not allocate malloc() request stream\n");

exit(1);

}

getAllocArray(allocs);

/*start timer and do some work*/

initMemMgr(1024*1024);

printf("PerformanceTest::runTest(): time whistle blown\n");

ticks1 = GetTickCount();

for(i=0;i<nAllocations;i++)

{

addr[i] = (char *)newMalloc(allocs[i]);

if(addr[i]==NULL)

{

printf("mallco()=addr[%lu]=%lu failed\n",i,addr[i]);

exit(1);

}

}

for(i=0;i<nAllocations;i++)

{

newFree(addr[i]);

}

ticks2 = GetTickCount();

printf("PerformanceTest::runTest(): race has ended\n");

closeMemMgr();

222 Chapter 4

free(addr);

free(allocs);

return(ticks2-ticks1);

}/*end runTest--*/

Depending on the source files that I #include, different versions
of newMalloc() and newFree() can be used. I can also replace
newMalloc()/newFree() with the native malloc()/free()
implementations to get a baseline measurement.

You may notice that I defer time measurement until the last pos-
sible moment. I don’t start measuring clock ticks until the instant
directly before the memory allocation calls start occurring. This is
because I don’t want to include the time that was spent loading the
application, constructing input values, and executing shutdown
code.

I will admit that my testing code is synthetic, but my crude
approach is motivated by a need to keep my discussion limited. You
could fill up several books with an explanation and analysis of more
sophisticated performance testing methods. Per my initial design
goal (keep it simple . . . stupid), I have opted for the path of least
resistance.

There are a number of industrial-strength benchmark suites that
have been built to provide a more accurate picture of how well a
processor or application performs. For example, the TOP500
Supercomputer Sites portal (http://www.top500.org) uses
the LINPACK Benchmark to rank high-performance installations.
The LINPACK Benchmark tests the horsepower of a system by
asking it to solve a dense set of linear equations.

SPEC, the Standard Performance Evaluation Corporation, is a
nonprofit corporation registered in California that aims to “estab-
lish, maintain, and endorse a standardized set of relevant
benchmarks that can be applied to the newest generation of high-
performance computers” (quoted from SPEC’s bylaws; see
http://www.spec.org). SPEC basically sells a number of
benchmark suites that can be used to collect performance metrics.
For example, SPEC sells a CPU2000 V1.2 package that can be used
to benchmark processors. SPEC also sells a JVM98 suite to test the
performance of Java virtual machines. If you have $1,800 to spare,
you can purchase SPEC’s MAIL2000 mail server benchmark suite.

Manual Memory Management 223

C
h
a
p
te

r
4

Indexing: The General Approach

For the remainder of this chapter, I will introduce three different
ways to manage memory with explicit recycling. All of the
approaches that I discuss use techniques that fall into the category
of indexing schemes, which is to say that they keep track of free and
allocated memory using an indexing data structure. What distin-
guishes the following three techniques is the type of indexing data
structure that they use and how they use it. In each case, I will start
with an abstract explanation of how the basic mechanism works.
Then I will offer a concrete implementation and take it for a test
drive. I will end each discussion with an analysis that looks into the
benefits and potential disadvantages of each approach.

malloc() Version 1: Bitmapped Allocation

Theory

The bit map approach uses an array of bits to keep track of which
regions of memory are free and which regions are occupied. Mem-
ory is broken up into small plots of real estate, and each bit in the bit
map represents one of these plots. This is illustrated in Figure 4.5.

The problem with this approach is that the bit map does not indicate
how much memory has been allocated for a given region. If you exe-
cute a command like

my_address = malloc(55);

free(my_address);

224 Chapter 4

Figure 4.5

the bit map will not know how much storage to free because a bit
map has no place to record how much storage was allocated. All a
bit map can do is tell you which regions of memory are free and
which are taken. When you allocate the 55 bytes above, a certain
number of bits in the bit map will be cleared. However, once this
happens, the bit map cannot tell who owns the region and how much
memory they control.

This means that we need to augment the bit map with another
data structure that will be able to record how much memory is
reserved for each allocation. I decided to use a binary search tree
(BST) to serve this purpose. These two data structures — the bit
map and the binary search tree — complement each other nicely.
The bit map is used during the allocation phase to locate a free
memory region, and the BST is used during the release phase to
determine how many bits in the bit map to reset.

NOTE In my implementation, I used a set bit (1) to indicate a free
region of memory and a clear bit (0) to indicate an occupied region of
memory. The choice is arbitrary, but it is important to remember this if
you are going to understand my bookkeeping.

The best way to prepare you to look at the source is to provide
psuedocode for the core memory management algorithms:

allocation: (void * newMalloc(unsigned long size))

1. Translate the number of bytes requested to an equivalent
number of bits in the bit map.

Manual Memory Management 225

C
h
a
p
te

r
4

Figure 4.6

2. Look for a run of free bits equal to the value calculated in
step 1.

3. If such a run exists, go to step 4; otherwise return NULL.

4. Clear the bits in the bit map to indicate that the associated
memory is occupied.

5. Create a BST entry for the allocated memory and insert it into
the BST.

6. Return the address of the first byte of the allocated memory.

A run of bits in the bit map is just a sequence of consecutively set
or clear bits. With regard to allocation, we are interested in runs of
bits that are set (i.e., set to 1).

release: (void newFree(void *addr))

1. Take the address supplied and use it to index an entry in the
BST.

2. If an entry exists, then go to step 3; otherwise stop.

3. Use the information in the BST entry to set bits in the bit map
to the “free” state.

Each BST node represents a region of allocated memory. As such,
the nodes contain three vital pieces of information. They store the
allocated memory’s address in the heap. They also store the allo-
cated memory’s starting index in the bit map and the number of bits
that are utilized in the bit map. This allows the node to take a call
from a function like newFree() and map the function’s linear
address argument to a location in the bit map.

Implementation

The source code implementation of the bit map memory manager is
broken up into several files:

Table 4.2

File Use

driver.cpp contains main(), is the scene of the crime

mallocV1.cpp newMalloc(), newFree() wrappers

perform.cpp implements the PerformanceTest class

memmgr.cpp uses bitmap.cpp and tree.cpp to institute a policy

bitmap.cpp implements the bit map

tree.cpp implements the BST

The tree.cpp and bitmap.cpp files provide the mechanism
side of the memory manager. These files contain fairly neutral

226 Chapter 4

implementations of a BST and a bit map. The MemoryManager
class in memmgr.cpp is what brings these two mechanisms
together to institute a working policy.

tree.cpp

The BST implementation is fairly generic:

/*++

+ declarations

+

++*/

struct BiNode

{

unsigned long value; //linear address

unsigned long index; //index into bitmap [0,nbits-1]

unsigned long nreserved; //number of bits reserved

struct BiNode *left;

struct BiNode *right;

};

class BinarySearchTree

{

public:

struct BiNode *root_ptr;

void insertNode(struct BiNode **link, unsigned long val);

void insertNode(struct BiNode **link, struct BiNode *ptr);

struct BiNode* findNode(struct BiNode *link, unsigned

long val);

struct BiNode* deleteSmallestNode(struct BiNode **link);

void deleteNode(struct BiNode **link, unsigned long val);

void deleteAll(struct BiNode **link);

void printTree(struct BiNode *link, int level);

unsigned long getHeight(struct BiNode *link);

};

/*+++

+ definitions

+

+++*/

/*

given struct Binode **link

Manual Memory Management 227

C
h
a
p
te

r
4

link = address of a variable which holds the address

of the node

*link = address of the node

**link = node

*/

void BinarySearchTree::insertNode(struct BiNode **link,

unsigned long val)

{

if(*link==NULL)

{

(*link) = (struct BiNode*)malloc(sizeof(struct BiNode));

(*(*link)).value = val;

(*(*link)).left = NULL;

(*(*link)).right = NULL;

PRINT("insertNode(): inserting %d\n",val);

}

else if(val < (*(*link)).value)

{

PRINT("insertNode(): moving left\n",val);

insertNode(&((*(*link)).left),val);

}

else

{

PRINT("insertNode(): moving right\n",val);

insertNode(&((*(*link)).right),val);

}

return;

}/*end insertNode---*/

void BinarySearchTree::insertNode(struct BiNode **link, struct

BiNode *ptr)

{

if(*link==NULL)

{

(*link) = (struct BiNode*)malloc(sizeof(struct BiNode));

(*(*link)).value = (*ptr).value;

(*(*link)).index = (*ptr).index;

(*(*link)).nreserved = (*ptr).nreserved;

(*(*link)).left = NULL;

(*(*link)).right = NULL;

PRINT("insertNode(): inserting %d\n",(*ptr).value);

}

else if((*ptr).value < (*(*link)).value)

{

PRINT("insertNode(): moving left\n",(*ptr).value);

insertNode(&((*(*link)).left),ptr);

}

228 Chapter 4

else

{

PRINT("insertNode(): moving right\n",(*ptr).value);

insertNode(&((*(*link)).right),ptr);

}

return;

}/*end insertNode---*/

struct BiNode* BinarySearchTree::findNode

(

struct BiNode *link,

unsigned long val

)

{

if(link==NULL)

{

return(NULL);

}

else if((*link).value == val)

{

return(link);

}

else if(val >= (*link).value)

{

return(findNode((*link).right,val));

}

else

{

return(findNode((*link).left,val));

}

}/*end findNode---*/

struct BiNode* BinarySearchTree::deleteSmallestNode(struct

BiNode **link)

{

if((*(*link)).left != NULL)

{

return(deleteSmallestNode(&((*(*link)).left)));

}

else

{

struct BiNode *temp;

temp = *link;

(*link) = (*(*link)).right;

return(temp);

}

}/*end deleteSmallestNode-------------------------------------*/

Manual Memory Management 229

C
h
a
p
te

r
4

void BinarySearchTree::deleteNode

(

struct BiNode **link,

unsigned long val

)

{

if((*link)==NULL)

{

PRINT("deleteNode(): %d does not exist\n",val);

return;

}

if(val < (*(*link)).value)

{

deleteNode(&((*(*link)).left),val);

}

else if(val > (*(*link)).value)

{

deleteNode(&((*(*link)).right),val);

}

else

{

/*

have equality

3 cases

i) node has no children (just delete it)

ii) node has one child

(set parent of current node

to child of current node, delete current node)

iii) node has two children/subtrees

In the third case, get smallest/leftmost node in

right subtree of current node. Then delete the

leftmost node and place its value in the current

node (retain binary tree properties)

*/

struct BiNode *temp;

temp = *link;

if((*(*link)).right==NULL)

{

(*link) = (*(*link)).left;

}

else if((*(*link)).left==NULL)

{

(*link) = (*(*link)).right;

}

else

{

temp = deleteSmallestNode(&((*(*link)).right));

230 Chapter 4

(*(*link)).value = (*temp).value;

}

PRINT("deleteNode(): freeing %d\n",val);

free(temp);

}

return;

}/*end deleteNode---*/

void BinarySearchTree::deleteAll(struct BiNode **link)

{

if((*link)==NULL)

{

return;

}

deleteAll(&((*(*link)).left));

deleteAll(&((*(*link)).right));

PRINT("deleteAll(): freeing %d\n",(*(*link)).value);

free((*link));

*link=NULL;

return;

}/*end deleteAll--*/

void BinarySearchTree::printTree(struct BiNode *link, int level)

{

int i;

if(link==NULL)

{

return;

}

printTree((*link).right,level+1);

for(i=0;i<level;i++){ printf("-");}

printf("(%d)\n",(*link).value);

printTree((*link).left,level+1);

return;

}/*end printTree--*/

unsigned long BinarySearchTree::getHeight(struct BiNode *link)

{

unsigned long u;

unsigned long v;

if(link==NULL){ return(-1); }

Manual Memory Management 231

C
h
a
p
te

r
4

u = getHeight((*link).left);

v = getHeight((*link).right);

if(u > v){ return(u+1); }

else{ return(v+1); }

}/*end getHeight--*/

bitmap.cpp

The BitMap class is also fairly straightforward in its implementa-
tion and could be reused for something else:

/*

1 bitmap bit = 16-byte block of memory

1 bitmap byte (i.e., block) = 128-byte block of memory

*/

#define BYTES_PER_BITMAP_BIT 16

#define BYTES_PER_BITMAP_BYTE 128

/*++

+ declarations

+

++*/

class BitMap

{

private:

unsigned char *map;

unsigned long nbytes;

unsigned long nbits;

public:

BitMap(unsigned long nblocks);

~BitMap();

unsigned long getByteSize();

void setBits(int val,unsigned long nbits,unsigned long

index);

int getBit(unsigned long index);

long getBitRun(unsigned long size);

void printMap();

};

/*++

+ definitions

+

++*/

232 Chapter 4

BitMap::BitMap(unsigned long nblocks)

{

unsigned long i;

map = (unsigned char*)calloc(nblocks,1);

if(map==NULL)

{

printf("BitMap::BitMap():");

printf("could not allocate bitmap\n");

exit(1);

}

nbytes = nblocks;

nbits = nbytes*8;

for(i=0;i<nbytes;i++){ map[i]=0xFF; }

printf("BitMap::BitMap(): nbytes=%lu",nbytes);

printf(", nbits=%lu\n",nbits);

return;

}/*end constructor--*/

BitMap::~BitMap()

{

printf("BitMap::~BitMap(): freeing map[%ld]\n",nbytes);

free(map);

return;

}/*end destructor---*/

unsigned long BitMap::getByteSize()

{

return(nbytes);

}/*end getByteSize()--*/

/*

set nbits to val(i.e., 0,1) starting at bit specified by index

*/

void BitMap::setBits

(

int val,

unsigned long nbits,

unsigned long index

)

{

unsigned long bit;

unsigned long i,j;

unsigned char mask;

Manual Memory Management 233

C
h
a
p
te

r
4

bit=0;

for(i=0;i<nbytes;i++)

{

mask = 1;

for(j=0;j<8;j++)

{

if(bit>=index)

{

if(bit==index+nbits){ return;}

if(val){ map[i]=map[i]|mask; }

else{ map[i]=map[i]&(~mask); }

}

bit++;

mask = mask*2;

}

}

return;

}/*setBits--*/

/*

returns that value of the specified bit (0-nbits-1)

or -1 if index is out of bounds

*/

int BitMap::getBit(unsigned long index)

{

unsigned long bit;

unsigned long i,j;

unsigned char mask;

bit=0;

for(i=0;i<nbytes;i++)

{

mask = 1;

for(j=0;j<8;j++)

{

if(bit==index)

{

if(map[i]&mask){ return(1); }

else{ return(0); }

}

bit++;

mask = mask*2;

}

}

return(-1);

234 Chapter 4

}/*getBit---*/

/*

returns the index that marks the start of 'size' bits set to 1

or returns -1 if such a run was not found

*/

long BitMap::getBitRun(unsigned long size)

{

unsigned long current_size;

unsigned long bit;

unsigned long i,j;

unsigned char mask;

current_size=0;

bit=0;

for(i=0;i<nbytes;i++)

{

mask = 1;

for(j=0;j<8;j++)

{

if(map[i]&mask)

{

current_size++;

if(current_size==size){ return(bit-size+1); }

}

else

{

current_size=0;

}

bit++;

mask = mask*2;

}

}

return(-1);

}/*getBitRun--*/

void BitMap::printMap()

{

unsigned long bit;

unsigned long i,j;

unsigned char mask;

bit=0;

for(i=0;i<nbytes;i++)

Manual Memory Management 235

C
h
a
p
te

r
4

{

mask = 1;

printf("byte[%u]=%x\n",i,map[i]);

for(j=0;j<8;j++)

{

if(map[i]&mask){ printf("1"); }

else{ printf("0"); }

bit++;

mask = mask*2;

}

printf("\n\n");

}

return;

}/*end printMap---*/

memmgr.cpp

This source file brings the two previous data structures together to
form an actual memory manager, known fittingly as the Memory-
Manager class.

/*++

+ declarations

+

++*/

class MemoryManager

{

private:

BinarySearchTree bst;

BitMap *bmap;

HANDLE handle; //handle to heap

unsigned char *mem; //actual memory to manage

unsigned long memLength; //size in bytes of memory

public:

MemoryManager(unsigned long totalbytes);

~MemoryManager();

void* allocate(unsigned long nbytes);

void release(void *ptr);

void printState();

};

/*++

+ definitions

+

++*/

236 Chapter 4

/*

sets the total amount of memory, no re-sizing in this case each

byte in the BitMap represents BYTES_BITMAP_BYTE bytes of memory

*/

MemoryManager::MemoryManager(unsigned long totalbytes)

{

//init 3 dynamic objects: bmap, bst, mem[]

bmap = new BitMap((totalbytes/BYTES_PER_BITMAP_BYTE)+1);

bst.root_ptr=NULL;

memLength = (*bmap).getByteSize()*BYTES_PER_BITMAP_BYTE;

handle = GetProcessHeap();

if(handle==NULL)

{

printf("MemoryManager::MemoryManager(): invalid

handle\n");

return;

}

mem = (unsigned char*)HeapAlloc(handle,HEAP_ZERO_MEMORY,

memLength);

//for portability, you could use:

//mem = (unsigned char*)malloc(memLength);

if(mem==NULL)

{

printf("MemoryManager::MemoryManager():");

printf("could not alloc memory\n");

exit(1);

}

printf("MemoryManager::MemoryManager():");

printf("mallloc() mem[%lu]\n",memLength);

return;

}/*end constructor--*/

MemoryManager::~MemoryManager()

{

//release resources for objects: bmap, bst, mem[]

delete(bmap);

bst.deleteAll(&(bst.root_ptr));

if(HeapFree(handle,HEAP_NO_SERIALIZE,mem)==0)

{

Manual Memory Management 237

C
h
a
p
te

r
4

printf("MemoryManager::~MemoryManager(): HeapFree()

failed\n");

return;

}

//for portability, you could use:

//free(mem);

printf("MemoryManager::~MemoryManager():");

printf("free() mem[%lu]\n",memLength);

return;

}/*end destructor---*/

void* MemoryManager::allocate(unsigned long nbytes)

{

unsigned long run_bits;

long index;

struct BiNode node;

PRINT("MemoryManager::allocate(): request %lu bytes\n",

nbytes);

//translate nbytes into # of bits in BitMap

run_bits = (nbytes/BYTES_PER_BITMAP_BIT)+1;

PRINT("MemoryManager::allocate(): run_bits=%lu\n",run_bits);

//look for # of free bits in BitMap

index = ((*bmap).getBitRun(run_bits));

PRINT("MemoryManager::allocate(): found run of %lu bits

",run_bits);

PRINT("at %lu\n",index);

if(index==-1){ return(NULL); }

//reserved bits in BitMap

(*bmap).setBits(0,run_bits,index);

node.value = (unsigned long)(&mem[index*16]);

node.index = index;

node.nreserved = run_bits;

bst.insertNode(&(bst.root_ptr),&node);

//return memory represented by BitMap bits

238 Chapter 4

PRINT("MemoryManager::allocate(): address=%lu\n",&mem

[index*16]);

return((void*)&mem[index*16]);

}/*end allocate---*/

void MemoryManager::release(void *addr)

{

struct BiNode *ptr;

ptr = bst.findNode(bst.root_ptr,(unsigned long)addr);

if(ptr!=NULL)

{

PRINT("MemoryManager::release(): addr=%lu\n",(unsigned

long)addr);

(*bmap).setBits(1,(*ptr).nreserved,(*ptr).index);

bst.deleteNode(&(bst.root_ptr),(unsigned long)addr);

}

return;

}/*end release--*/

void MemoryManager::printState()

{

printf("---\n");

(*bmap).printMap();

printf("---\n");

bst.printTree(bst.root_ptr,0);

printf("---\n");

return;

}/*end printState---*/

mallocV1.cpp

This file supplies wrappers that allow the MemoryManager class
to be used under the guise of the newMalloc() and newFree()
functions so that existing applications will only have to be slightly
modified.

#include<stdio.h>

#include<stdlib.h>

#include<windows.h>

// these DEBUG_XXX macros insert printf() statements in the

final executable

//#define DEBUG_TREE

//#define DEBUG_BITMAP

Manual Memory Management 239

C
h
a
p
te

r
4

//#define DEBUG_MEM_MGR

//#define DEBUG_MALLOCV1

#include<tree.cpp>

#include<bitmap.cpp>

#include<memmgr.cpp>

/*

wrapper functions

*/

MemoryManager *mmptr;

void initMemMgr(unsigned long totalbytes)

{

mmptr = new MemoryManager(totalbytes);

}

void closeMemMgr()

{

delete(mmptr);

}

void *newMalloc(unsigned long size)

{

void *ptr = (*mmptr).allocate(size);

#ifdef DEBUG_MALLOCV1

(*mmptr).printState();

#endif

return(ptr);

}

void newFree(void *ptr)

{

(*mmptr).release(ptr);

#ifdef DEBUG_MALLOCV1

(*mmptr).printState();

#endif

return;

}

The DEBUG_XXX macros, defined at the top of this file insert, acti-
vate a set of debugging printf() statements in each file. For the
performance test run, I commented these macros out so that none
of the printf() statements made it into the build.

240 Chapter 4

perform.cpp

In addition to the PerformanceTest class described earlier, this
file also contains the definition of the PerformanceTest-
Driver() function that will be called from main().

void PerformanceTestDriver()

{

double p[8] = {.15, .20, .35, .20, .02, .04, .02, .02};

unsigned long x[8] = {16,32,64,128,256,512,1024,4096};

struct TestData td;

td.dptr = p;

td.lptr = x;

td.samplesize = 1024;

td.length = 8;

PerformanceTest pt = PerformanceTest(&td);

printf("msecs=%lu\n",pt.runTest());

return;

}/*end PerformanceTestDriver----------------------------------*/

driver.cpp

This file is where everything comes together. The main() function
contains a call to debugTest() and PerformanceTest-
Driver(). For diagnostic builds, I activate the debug macros in
mallocV1.cpp and then comment out the Performance-
TestDriver()function call. For the build that tests performance,
I comment out the debug macros and the debugTest() function
invocation. The version of driver.cpp below is set up to build an
executable that runs a performance test.

#include<mallocV1.cpp>

#include<perform.cpp>

void debugTest()

{

void *ptr[10];

int i;

initMemMgr(270);

ptr[0] = newMalloc(8);

ptr[1] = newMalloc(12);

ptr[2] = newMalloc(33);

ptr[3] = newMalloc(1);

ptr[4] = newMalloc(122);

Manual Memory Management 241

C
h
a
p
te

r
4

ptr[5] = newMalloc(50);

for(i=0;i<6;i++){ newFree(ptr[i]); }

closeMemMgr();

return;

}/*end debugTest--*/

void main()

{

//for the debug test, should activate debug macros in

//mallocVx.cpp

//debugTest();

//for the performance test, should comment out debug macros

PerformanceTestDriver();

return;

}/*end main---*/

Tests

I performed two different tests against this memory manager. A
debug test was performed to make sure that the manager was doing
what it was supposed to do. If you modify my source code, I would
suggest running the debug test again to validate your changes. Once
I was sure that the memory manager was operational, I turned off
debugging features and ran a performance test.

The debug test was performed by executing the code in the
debugTest() function defined in the driver.cpp source file. I
keep things fairly simple, but at the same time, I take a good, hard
look at what is going on. If you decide to run a debug test, you will
want to make sure that the DEBUG_XXX macros in malloc-
V1.cpp are turned on. You will also want to comment out the
PerformanceTestDriver() function call in main().

The following output was generated by the debug build of the
memory manager. After every allocation and release, I print out the
contents of the bit map and the binary search tree. This provides a
state snapshot of the memory manager. Also, the bits in each bit
map byte read from left to right (which is to say that the lower order
bits are on the left-hand side):

BitMap::BitMap(): nbytes=3, nbits=24

MemoryManager::MemoryManager():mallloc() mem[384]

MemoryManager::allocate(): request 8 bytes

MemoryManager::allocate(): run_bits=1

MemoryManager::allocate(): found run of 1 bits at 0

242 Chapter 4

insertNode(): inserting 5373964

MemoryManager::allocate(): address=5373964

byte[0]=fe

01111111

byte[1]=ff

11111111

byte[2]=ff

11111111

(5373964)

MemoryManager::allocate(): request 12 bytes

MemoryManager::allocate(): run_bits=1

MemoryManager::allocate(): found run of 1 bits at 1

insertNode(): moving right

insertNode(): inserting 5373980

MemoryManager::allocate(): address=5373980

byte[0]=fc

00111111

byte[1]=ff

11111111

byte[2]=ff

11111111

-(5373980)

(5373964)

MemoryManager::allocate(): request 33 bytes

MemoryManager::allocate(): run_bits=3

MemoryManager::allocate(): found run of 3 bits at 2

insertNode(): moving right

insertNode(): moving right

insertNode(): inserting 5373996

MemoryManager::allocate(): address=5373996

byte[0]=e0

00000111

byte[1]=ff

11111111

byte[2]=ff

11111111

--(5373996)

-(5373980)

(5373964)

MemoryManager::allocate(): request 1 bytes

MemoryManager::allocate(): run_bits=1

MemoryManager::allocate(): found run of 1 bits at 5

Manual Memory Management 243

C
h
a
p
te

r
4

insertNode(): moving right

insertNode(): moving right

insertNode(): moving right

insertNode(): inserting 5374044

MemoryManager::allocate(): address=5374044

byte[0]=c0

00000011

byte[1]=ff

11111111

byte[2]=ff

11111111

---(5374044)

--(5373996)

-(5373980)

(5373964)

MemoryManager::allocate(): request 122 bytes

MemoryManager::allocate(): run_bits=8

MemoryManager::allocate(): found run of 8 bits at 6

insertNode(): moving right

insertNode(): moving right

insertNode(): moving right

insertNode(): moving right

insertNode(): inserting 5374060

MemoryManager::allocate(): address=5374060

byte[0]=0

00000000

byte[1]=c0

00000011

byte[2]=ff

11111111

----(5374060)

---(5374044)

--(5373996)

-(5373980)

(5373964)

MemoryManager::allocate(): request 50 bytes

MemoryManager::allocate(): run_bits=4

MemoryManager::allocate(): found run of 4 bits at 14

insertNode(): moving right

insertNode(): moving right

insertNode(): moving right

insertNode(): moving right

insertNode(): moving right

insertNode(): inserting 5374188

MemoryManager::allocate(): address=5374188

244 Chapter 4

byte[0]=0

00000000

byte[1]=0

00000000

byte[2]=fc

00111111

-----(5374188)

----(5374060)

---(5374044)

--(5373996)

-(5373980)

(5373964)

MemoryManager::release(): address=5373964

deleteNode(): freeing 5373964

byte[0]=1

10000000

byte[1]=0

00000000

byte[2]=fc

00111111

----(5374188)

---(5374060)

--(5374044)

-(5373996)

(5373980)

MemoryManager::release(): address=5373980

deleteNode(): freeing 5373980

byte[0]=3

11000000

byte[1]=0

00000000

byte[2]=fc

00111111

---(5374188)

--(5374060)

-(5374044)

(5373996)

MemoryManager::release(): address=5373996

deleteNode(): freeing 5373996

byte[0]=1f

11111000

Manual Memory Management 245

C
h
a
p
te

r
4

byte[1]=0

00000000

byte[2]=fc

00111111

--(5374188)

-(5374060)

(5374044)

MemoryManager::release(): address=5374044

deleteNode(): freeing 5374044

byte[0]=3f

11111100

byte[1]=0

00000000

byte[2]=fc

00111111

-(5374188)

(5374060)

MemoryManager::release(): address=5374060

deleteNode(): freeing 5374060

byte[0]=ff

11111111

byte[1]=3f

11111100

byte[2]=fc

00111111

(5374188)

MemoryManager::release(): address=5374188

deleteNode(): freeing 5374188

byte[0]=ff

11111111

byte[1]=ff

11111111

byte[2]=ff

11111111

BitMap::~BitMap(): freeing map[3]

MemoryManager::~MemoryManager():free() mem[384]

The performance test was nowhere near as extended with regard to
the output that it produced. This was primarily because all the

246 Chapter 4

debug printf() statements had been precluded from the build.
Here is the output generated by the performance test build:

BitMap::BitMap(): nbytes=8193, nbits=65544

MemoryManager::MemoryManager():mallloc() mem[1048704]

PerformanceTest::runTest(): time whistle blown

PerformanceTest::runTest(): race has ended

BitMap::~BitMap(): freeing map[8193]

MemoryManager::~MemoryManager():free() mem[1048704]

msecs=856

The most important value is located on the last line of the output.
The bitmapped memory manager took 856 milliseconds to allocate
and free 1024 regions of memory. This will not mean much until we
look at the other memory managers.

Trade-Offs

Bit mapped memory managers have the benefit of providing a
straightforward way to organize memory that, depending on the
bit-to-memory ratio, can minimize internal fragmentation. Many
early operating systems used bit maps to help manage memory
because bit maps are fixed in size and thus can be placed outside of
the chaos of the kernel’s dynamic memory pools. For example, if
each bit in a bit map represents 16 bytes of memory, a 512KB bit
map will be needed to manage 64MB of memory. Although this
doesn’t include the storage needed for the associated BST, you can
see that the overhead isn’t that bad.

On the other hand, finding a run of free bits in a bit map means
that you may have to traverse the entire set of bits to find what you
are looking for (assuming that you do find it). This mandatory
searching makes allocation very expensive in terms of execution
time.

If I had to improve this code, I would replace the binary search
tree with a tree data structure that is guaranteed to be well-bal-
anced. As you can see from the debug output, the binary tree that
was formed was worst-case unbalanced (and that’s an understate-
ment). This is more a function of the request stream than of
anything else.

I would also tackle the code in the BitMap class that traverses
the bit map data structure. Most of my BitMap member function
implementations are based on brute force iteration. There are some
circumstances where I could skip needless iteration by being a little
more skillful with implied starting points. For example, it is obvious
that the 18th bit will be in the third byte of the bit map, so there is
no need to cycle through the first two bytes of the map.

Manual Memory Management 247

C
h
a
p
te

r
4

Finally, another weak point of my implementation is that it cannot
grow. The memory manager described in this section starts off with
a fixed amount of heap memory, and that is all that it gets. A produc-
tion-quality memory manager would be able to increase its pool of
storage by making a request to the underlying operating system.

malloc() Version 2: Sequential Fit

Back in the early 1990s, I was experimenting with DOS in an effort
to see how malloc() and free() were implemented by
Borland’s Turbo C libraries.

Here is the program that I used:

#include<stdio.h>

#include<stdlib.h>

void main()

{

void *ptr[5];

int i;

for(i=0;i<5;i++)

{

ptr[i]=malloc(32);

printf("%p\n",ptr[i]);

}

for(i=0;i<5;i++)

{

free(ptr[i]);

}

return;

}

I compiled this using the following command line: C:\dos> tcc

-mh dmalloc.c.
I specified a “huge” memory model (via the -mh option) so that

addresses would be specified in the segment:offset real mode
format.

This program produced the following output while running on
DOS:

193B:0004 (physical address 193B4)

193E:0004 (physical address 193E4)

1941:0004 (physical address 19414)

1944:0004 (physical address 19444)

1947:0004 (physical address 19474)

As you can see, the libraries give each allocation its own 48-bit
block. It is more than likely that the extra 16 bytes is used by the

248 Chapter 4

Turbo C malloc() and free() libraries to link the regions of
memory together into a linked list. This is a key feature of the
sequential fit approach to memory management.

Theory

The sequential fit technique organizes memory into a linear linked
list of free and reserved regions (see Figure 4.7). When an allocation
request occurs, the memory manager moves sequentially through
the list until it finds a free block of memory that can service/fit the
request (hence the name “sequential fit”).

Typically, an external data structure is not needed because portions
of the allocated memory are reserved so that the memory being
managed can index itself. Logically, the blocks of memory are
arranged as in Figure 4.7. However, the actual organization of each
block, be it free or reserved, in my implementation is specified by
Figure 4.8.

Manual Memory Management 249

C
h
a
p
te

r
4

Figure 4.7

Figure 4.8

The scheme for allocation is pretty simple; the memory manager
simply traverses the linked list of memory blocks until it reaches a
free block that is big enough to satisfy the request. If the free block
is much larger than the memory request, it will split the free block
into two pieces. One part of the split block will be used to service
the request, and the other part will remain free to service other
requests for memory (see Figure 4.9).

The algorithm for releasing blocks of memory requires adjacent
blocks of free memory to be merged. This is where the real work
occurs. For a block situated between two other blocks, there are
basically four different scenarios that are possible (see Figure 4.10).

The trick is to be able to reassign the NEXT and PREVIOUS point-
ers, shown in Figure 4.7, correctly. If both blocks on either side of a
freed block are occupied, no pointer manipulation needs to be per-
formed. However, if one or both of the adjacent blocks is free,
blocks of memory will need to be merged.

The best way to understand this is visually. Figure 4.11 shows an
example of the pointer manipulation that needs to be performed in
order to merge two adjacent blocks.

250 Chapter 4

Figure 4.9

Figure 4.10

For a rigorous explanation of how memory block merging works,
read the source code of the SequentialFitMemoryManager
class.

Implementation

Because storage space in the heap is used to help organize heap
memory, the sequential fit memory manager implementation is not
as prolific as the bit map-based manager. My implementation
requires only four files:

Table 4.3

File Use

driver.cpp contains main(), is the scene of the crime

mallocV2.cpp newMalloc(), newFree() wrappers (2nd version)

perform.cpp implements the PerformanceTest class

memmgr.cpp implements the SequentialFitMemoryManager class

memmgr.cpp

The majority of the real work is performed by the class defined in
this file. The SequentialFitMemoryManager class takes care
of allocating heap storage from Windows and managing it. Both the
allocation and release functions have secondary private helper rou-
tines. The allocation function uses a helper function to split free
blocks. The release function calls a helper function to perform the
actual merging of free memory blocks.

Manual Memory Management 251

C
h
a
p
te

r
4

Figure 4.11

#ifdef DEBUG_SF_MEM_MGR

#define MSG0(arg); printf(arg);

#define MSG1(arg1,arg2); printf(arg1,arg2);

#else

#define MSG0(arg);

#define MSG1(arg1,arg2);

#endif

#define U1 unsigned char

#define U4 unsigned long

/*

list element format

|0 3||4 7|| 8 ||9 12||13 .. n|

[PREV][NEXT][STATE][SIZE][payload]

U4 U4 U1 U4 ?

byte allocated/freed is address of first byte of payload

header = 13 bytes

byte[0] is occupied by header data, so is always used, thus

first link has prev=0 (0 indicates not used)

last link has next=0

*/

#define PREV(i) (*((U4*)(&ram[i-13])))

#define NEXT(i) (*((U4*)(&ram[i-9])))

#define STATE(i) (*((U1*)(&ram[i-5]))) /*FREE,OCCUPIED*/

#define SIZE(i) (*((U4*)(&ram[i-4])))

#define FREE 0

#define OCCUPIED 1

char *stateStr[3]={"FREE","OCCUPIED"};

#define START 13 /*address of first payload*/

#define SZ_HEADER 13

class SequentialFitMemoryManager

{

private:

HANDLE handle;

U1 *ram; /*memory storage*/

U4 size;

void split(U4 addr,U4 nbytes);

void merge(U4 prev,U4 current,U4 next);

public:

SequentialFitMemoryManager(U4 nbytes);

~SequentialFitMemoryManager();

252 Chapter 4

void*allocate(U4 nbytes);

void release(void* addr);

void printState();

};

SequentialFitMemoryManager::SequentialFitMemoryManager(U4

nbytes)

{

handle = GetProcessHeap();

if(handle==NULL)

{

printf("SequentialFitMemoryManager::");

printf("SequentialFitMemoryManager():");

printf("invalid handle\n");

exit(1);

}

ram = (U1*)HeapAlloc(handle,HEAP_ZERO_MEMORY,nbytes);

//for portability, you could use:

//ram = (unsigned char*)malloc(nbytes);

size = nbytes;

if(size<=SZ_HEADER)

{

printf("SequentialFitMemoryManager::");

printf("SequentialFitMemoryManager():");

printf("not enough memory fed to constructor\n");

exit(1);

}

PREV(START)=0;

NEXT(START)=0;

STATE(START)=FREE;

SIZE(START)=size-SZ_HEADER;

MSG0("SequentialFitMemoryManager::");

MSG1("SequentialFitMemoryManager(%lu)\n",nbytes);

return;

}/*end constructor--*/

SequentialFitMemoryManager::~SequentialFitMemoryManager()

{

if(HeapFree(handle,HEAP_NO_SERIALIZE,ram)==0)

{

printf("SequentialFitMemoryManager::");

Manual Memory Management 253

C
h
a
p
te

r
4

printf("~SequentialFitMemoryManager():");

printf("could not free heap storage\n");

return;

}

//for portability, you could use:

//free(ram);

MSG0("SequentialFitMemoryManager::");

MSG0("~SequentialFitMemoryManager()");

MSG1("free ram[%lu]\n",size);

return;

}/*end destructor---*/

/*

U4 nbytes - number of bytes required

returns address of first byte of memory region allocated

(or NULL if cannot allocate a large enough block)

*/

void* SequentialFitMemoryManager::allocate(U4 nbytes)

{

U4 current;

MSG0("SequentialFitMemoryManager::");

MSG1("allocate(%lu)\n",nbytes);

if(nbytes==0)

{

MSG0("SequentialFitMemoryManager::");

MSG0("allocate(): zero bytes requested\n");

return(NULL);

}

//traverse the linked list, starting with first element

current = START;

while(NEXT(current)!=0)

{

if((SIZE(current)>=nbytes)&&(STATE(current)==FREE))

{

split(current,nbytes);

return((void*)&ram[current]);

}

current = NEXT(current);

}

//handle the last block (which has NEXT(current)=0)

if((SIZE(current)>=nbytes)&&(STATE(current)==FREE))

254 Chapter 4

{

split(current,nbytes);

return((void*)&ram[current]);

}

return(NULL);

}/*end allocation---*/

/*

breaks [free] region into [alloc][free] pair, if possible

*/

void SequentialFitMemoryManager::split(U4 addr, U4 nbytes)

{

/*

want payload to have enough room for

nbytes = size of request

SZ_HEADER = header for new region

SZ_HEADER = payload for new region (arbitrary 13 bytes)

*/

if(SIZE(addr)>= nbytes+SZ_HEADER+SZ_HEADER)

{

U4 oldnext;

U4 oldprev;

U4 oldsize;

U4 newaddr;

MSG0("SequentialFitMemoryManager::");

MSG0("split(): split=YES\n");

oldnext=NEXT(addr);

oldprev=PREV(addr);

oldsize=SIZE(addr);

newaddr = addr + nbytes + SZ_HEADER;

NEXT(addr)=newaddr;

PREV(addr)=oldprev;

STATE(addr)=OCCUPIED;

SIZE(addr)=nbytes;

NEXT(newaddr)=oldnext;

PREV(newaddr)=addr;

STATE(newaddr)=FREE;

SIZE(newaddr)=oldsize-nbytes-SZ_HEADER;

}

else

{

Manual Memory Management 255

C
h
a
p
te

r
4

MSG0("SequentialFitMemoryManager::");

MSG0("split(): split=NO\n");

STATE(addr)=OCCUPIED;

}

return;

}/*end split--*/

void SequentialFitMemoryManager::release(void *addr)

{

U4 free; //index into ram[]

if(addr==NULL)

{

MSG0("SequentialFitMemoryManager::");

MSG0("release(): cannot release NULL pointer\n");

return;

}

MSG0("SequentialFitMemoryManager::");

MSG1("release(%lu)\n",addr);

//perform sanity check to make sure address is kosher

if((addr>= (void*)&ram[size]) || (addr< (void*)&ram[0]))

{

MSG0("SequentialFitMemoryManager::");

MSG0("release(): address out of bounds\n");

return;

}

//translate void* addr to index in ram[]

free = (U4)(((U1*)addr) - &ram[0]);

MSG0("SequentialFitMemoryManager::");

MSG1("address resolves to index %lu\n",free);

//a header always occupies first 13 bytes of storage

if(free<13)

{

MSG0("SequentialFitMemoryManager::");

MSG0("release(): address in first 13 bytes\n");

return;

}

//yet more sanity checks

if((STATE(free)!=OCCUPIED) || //region if free

256 Chapter 4

(PREV(free)>=free) || //previous element not previous

(NEXT(free)>=size) || //next is beyond the end

(SIZE(free)>=size) || //size region greater than whole

(SIZE(free)==0)) //no size at all

{

MSG0("SequentialFitMemoryManager::");

MSG0("release(): referencing invalid region\n");

return;

}

merge(PREV(free),free,NEXT(free));

return;

}/*end release--*/

/*

4 cases (F=free O=occupied)

FOF -> [F]

OOF -> O[F]

FOO -> [F]O

OOO -> OFO

*/

void SequentialFitMemoryManager::merge(U4 prev,U4 current,U4

next)

{

/*

first handle special cases of region at end(s)

prev=0 low end

next=0 high end

prev=0 and next=0 only 1 list element

*/

if(prev==0)

{

if(next==0)

{

STATE(current)=FREE;

}

else if(STATE(next)==OCCUPIED)

{

STATE(current)=FREE;

}

else if(STATE(next)==FREE)

{

U4 temp;

MSG0("SequentialFitMemoryManager::merge():");

MSG0("merging to NEXT\n");

Manual Memory Management 257

C
h
a
p
te

r
4

STATE(current)=FREE;

SIZE(current)=SIZE(current)+SIZE(next)+SZ_HEADER;

NEXT(current)=NEXT(next);

temp = NEXT(next);

PREV(temp)=current;

}

}

else if(next==0)

{

if(STATE(prev)==OCCUPIED)

{

STATE(current)=FREE;

}

else if(STATE(prev)==FREE)

{

MSG0("SequentialFitMemoryManager::merge():");

MSG0("merging to PREV\n");

SIZE(prev)=SIZE(prev)+SIZE(current)+SZ_HEADER;

NEXT(prev)=NEXT(current);

}

}

/* now we handle 4 cases */

else if((STATE(prev)==OCCUPIED)&&(STATE(next)==OCCUPIED))

{

STATE(current)=FREE;

}

else if((STATE(prev)==OCCUPIED)&&(STATE(next)==FREE))

{

U4 temp;

MSG0("SequentialFitMemoryManager::merge():");

MSG0("merging to NEXT\n");

STATE(current)=FREE;

SIZE(current)=SIZE(current)+SIZE(next)+SZ_HEADER;

NEXT(current)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=current; }

}

else if((STATE(prev)==FREE)&&(STATE(next)==OCCUPIED))

{

MSG0("SequentialFitMemoryManager::merge():");

MSG0("merging to PREV\n");

SIZE(prev)=SIZE(prev)+SIZE(current)+SZ_HEADER;

NEXT(prev)=NEXT(current);

PREV(next)=prev;

}

else if((STATE(prev)==FREE)&&(STATE(next)==FREE))

258 Chapter 4

{

U4 temp;

MSG0("SequentialFitMemoryManager::merge():");

MSG0("merging with both sides\n");

SIZE(prev)=SIZE(prev)+

SIZE(current)+SZ_HEADER+

SIZE(next)+SZ_HEADER;

NEXT(prev)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=prev; }

}

return;

}/*end merge--*/

void SequentialFitMemoryManager::printState()

{

U4 i;

U4 current;

i=0;

current=START;

while(NEXT(current)!=0)

{

printf("%lu) [P=%lu]",i,PREV(current));

printf("[addr=%lu]",current);

printf("[St=%s]",stateStr[STATE(current)]);

printf("[Sz=%lu]",SIZE(current));

printf("[N=%lu]\n",NEXT(current));

current = NEXT(current);

i++;

}

//print the last list element

printf("%lu) [P=%lu]",i,PREV(current));

printf("[addr=%lu]",current);

printf("[St=%s]",stateStr[STATE(current)]);

printf("[Sz=%lu]",SIZE(current));

printf("[N=%lu]\n",NEXT(current));

return;

}/*end printState---*/

Manual Memory Management 259

C
h
a
p
te

r
4

mallocV2.cpp

There were several minor alterations to this file, most notably the
presence of a different set of debugging macros. To activate debug-
ging code, uncomment the macros and compile a new build.

#include<stdio.h>

#include<stdlib.h>

#include<windows.h>

//#define DEBUG_SF_MEM_MGR

//#define DEBUG_MALLOCV2

#include<memmgr.cpp>

/*

wrapper functions

*/

SequentialFitMemoryManager *mmptr;

void initMemMgr(unsigned long totalbytes)

{

mmptr = new SequentialFitMemoryManager(totalbytes);

}

void closeMemMgr()

{

delete(mmptr);

}

void *newMalloc(unsigned long size)

{

void *ptr = (*mmptr).allocate(size);

#ifdef DEBUG_MALLOCV2

(*mmptr).printState();

#endif

return(ptr);

}

void newFree(void *ptr)

{

(*mmptr).release(ptr);

#ifdef DEBUG_MALLOCV2

(*mmptr).printState();

#endif

return;

}

260 Chapter 4

driver.cpp

As in the last example, this file contains the main() function defi-
nition that invokes the testing code. The debugTest() was
completely rewritten for this implementation. The Perfor-
manceTestDriver() function, defined in perform.cpp that
makes use of the PerformanceTest class, has been left
untouched.

#include<mallocV2.cpp>

#include<perform.cpp>

void debugTest()

{

void *ptr[6];

unsigned long allocs[6]={8,12,33,1,122,50};

int i;

initMemMgr(270);

for(i=0;i<6;i++)

{

ptr[i] = newMalloc(allocs[i]);

if(ptr[i]==NULL){ printf("ptr[%lu]==NULL!\n",i); }

}

printf("\n\nFREE MEMORY------------------------------\n\n");

newFree(ptr[0]); //8

newFree(ptr[3]); //1

newFree(ptr[4]); //122

newFree(ptr[2]); //33

newFree(ptr[1]); //12

newFree(ptr[5]); //50

closeMemMgr();

return;

}/*end debugTest--*/

void main()

{

//for the debug test, should activate debug macros in

mallocVx.cpp

//debugTest();

//for the performance test, should comment out debug macros

PerformanceTestDriver();

return;

}/*end main---*/

Manual Memory Management 261

C
h
a
p
te

r
4

Tests

If you look at the main() function defined in driver.cpp, you
will see that I performed both a debug test and a performance test. I
performed a debug test to make sure that the manager was doing
what it was supposed to do. If you modify my source code, I would
suggest running the debug test again to validate your changes. Once
I was sure that the memory manager was operational, I turned off
debugging features and ran a performance test.

The debug test is fairly simple, but at the same time, I would
take a good, hard look at what is going on. If you decide to run a
debug test, you will want to make sure that the DEBUG_XXX macros
in mallocV2.cpp are turned on. You will also want to comment
out the PerformanceTestDriver() function call in main().

The following output was generated by the debug build of the
memory manager:

SequentialFitMemoryManager::SequentialFitMemoryManager(270)

SequentialFitMemoryManager::allocate(8)

SequentialFitMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=FREE][Sz=236][N=0]

SequentialFitMemoryManager::allocate(12)

SequentialFitMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=FREE][Sz=211][N=0]

SequentialFitMemoryManager::allocate(33)

SequentialFitMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=FREE][Sz=165][N=0]

SequentialFitMemoryManager::allocate(1)

SequentialFitMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=OCCUPIED][Sz=1][N=119]

4) [P=105][addr=119][St=FREE][Sz=151][N=0]

SequentialFitMemoryManager::allocate(122)

SequentialFitMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=OCCUPIED][Sz=1][N=119]

4) [P=105][addr=119][St=OCCUPIED][Sz=122][N=254]

5) [P=119][addr=254][St=FREE][Sz=16][N=0]

SequentialFitMemoryManager::allocate(50)

262 Chapter 4

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=OCCUPIED][Sz=1][N=119]

4) [P=105][addr=119][St=OCCUPIED][Sz=122][N=254]

5) [P=119][addr=254][St=FREE][Sz=16][N=0]

ptr[5]==NULL!

FREE MEMORY-------------------------------------

SequentialFitMemoryManager::release(5439513)

SequentialFitMemoryManager::address resolves to index 13

0) [P=0][addr=13][St=FREE][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=OCCUPIED][Sz=1][N=119]

4) [P=105][addr=119][St=OCCUPIED][Sz=122][N=254]

5) [P=119][addr=254][St=FREE][Sz=16][N=0]

SequentialFitMemoryManager::release(5439605)

SequentialFitMemoryManager::address resolves to index 105

0) [P=0][addr=13][St=FREE][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=FREE][Sz=1][N=119]

4) [P=105][addr=119][St=OCCUPIED][Sz=122][N=254]

5) [P=119][addr=254][St=FREE][Sz=16][N=0]

SequentialFitMemoryManager::release(5439619)

SequentialFitMemoryManager::address resolves to index 119

SequentialFitMemoryManager::merge():merging with both sides

0) [P=0][addr=13][St=FREE][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=FREE][Sz=165][N=0]

SequentialFitMemoryManager::release(5439559)

SequentialFitMemoryManager::address resolves to index 59

SequentialFitMemoryManager::merge():merging to NEXT

0) [P=0][addr=13][St=FREE][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=FREE][Sz=211][N=0]

SequentialFitMemoryManager::release(5439534)

SequentialFitMemoryManager::address resolves to index 34

SequentialFitMemoryManager::merge():merging with both sides

0) [P=0][addr=13][St=FREE][Sz=257][N=0]

SequentialFitMemoryManager::release(): cannot release NULL

pointer

0) [P=0][addr=13][St=FREE][Sz=257][N=0]

SequentialFitMemoryManager::~SequentialFitMemoryManager()free

ram[270]

Manual Memory Management 263

C
h
a
p
te

r
4

Although it may seem a tad tedious, it will help you tremendously to
read the debugTest() function and then step through the previ-
ous output. It will give you an insight into what the code is doing
and how the particulars are implemented.

The performance test was conducted by commenting out
debugTest() and the debug macros in mallocV2.cpp, and
then enabling the PerformanceTestDriver() function. The
results of the performance run were interesting:

PerformanceTest::runTest(): time whistle blown

PerformanceTest::runTest(): race has ended

msecs=35

As you can see, the performance increase is dramatic.

Trade-Offs

The sequential fit approach solves many of the problems that
plagued the bitmapped approach by using an indexing scheme that
decreased redundant effort. Instead of manually sifting through each
bit in a bit map, we were able to use a series of pointers to find what
we needed much more quickly.

While the sequential fit technique did exhibit far better perfor-
mance than the bit map technique, we were only using a 270-byte
heap. For much larger heaps, such as a 15MB heap, the amount of
time needed to traverse a sequential linked list from beginning to
end can hurt performance. Thus, the sequential fit method is not
exactly a scalable solution.

In terms of choosing a memory block to allocate, I use what is
known as the first-fit policy, which is to say that my implementation
uses the first satisfactory block of memory that it finds. There are
other policies, like next-fit, best-fit, and worst-fit.

The first-fit policy tends to cause the blocks of memory at the
start of the linked list to splinter into a number of smaller blocks.
Given that the sequential fit algorithm traverses the list starting
from the beginning during an allocation, this can hurt execution
time.

The next-fit policy is like the first-fit policy, but the memory man-
ager keeps track of the position of the last allocation. When the next
allocation request is processed, the manager will start traversing
the linked list from the point of the last allocation. This is done in an
attempt to avoid re-traversing the beginning of the list.

The best-fit policy traverses the linked list of memory blocks and
uses the smallest possible block that will satisfy an allocation
request. The best-fit approach does not waste memory and

264 Chapter 4

minimizes internal fragmentation. In doing so, however, the policy
tends to generate significant external fragmentation. The search for
a “best” block can also be expensive in terms of execution time
because several possible blocks may have to be located and
compared.

The worst-fit policy is instituted by having the memory manager
allocate the largest possible memory block for a given request. This
policy aims at minimizing external fragmentation. It also does a
good job of eliminating large memory blocks so that the memory
manager will fail when a request for a large block is submitted.

malloc() Version 3: Segregated Lists

Theory

With the sequential fit approach, we spent a lot of effort in terms of
splitting and merging blocks of memory. The segregated lists
approach attempts to sidestep this problem by keeping several lists
of fixed-sized memory blocks. In other words, the heap storage is
segregated into groups of blocks based on their size. If you need a
32-byte block, query the appropriate list for free space instead of
traversing the entire heap.

In my segregated list implementation, I break memory into
6,136-byte rows, where each row consists of eight different blocks
of memory. This is illustrated in Figure 4.12. The size of the first
element in each row is 16 bytes, and the size of the last element in
each row is 4,096 bytes.

Manual Memory Management 265

C
h
a
p
te

r
4

Figure 4.12

Because the list elements are fixed in size, and their positions are
known, we do not need the PREVIOUS, FREE, and SIZE header
fields that were used in the sequential fit scheme. However, we do
need the STATE header field. This causes every plot of real estate
in memory to be prefixed by a header that is a single byte in size.

Each 6,136-byte row of memory contains eight memory blocks
that increase in size (see Figure 4.13). Given that rows are stacked
on top of each other in memory, as displayed in Figure 4.12, to get
to the next element of a specific size, take the index of a given ele-
ment and add 6,136 to it.

Implementation

The implementation of the segregated memory manager closely
mirrors the implementation of the sequential fit manager:

Table 4.4

File Use

driver.cpp contains main(), is the scene of the crime

mallocV3.cpp newMalloc(), newFree() wrappers (3rd version)

perform.cpp implements the PerformanceTest class

memmgr.cpp implements the SegregatedMemoryManager class

The only files that I had to modify were the mallocV3.cpp file
and the memmgr.cpp file.

266 Chapter 4

Figure 4.13

memmgr.cpp

The majority of the real work is performed by the class defined in
this file. The SegregatedMemoryManager class takes care of
allocating heap storage from Windows and managing it. The alloca-
tion function uses a helper function to search through the free lists.
The release function does everything by itself.

#ifdef DEBUG_SL_MEM_MGR

#define MSG0(arg); printf(arg);

#define MSG1(arg1,arg2); printf(arg1,arg2);

#else

#define MSG0(arg);

#define MSG1(arg1,arg2);

#endif

#define U1 unsigned char

#define U4 unsigned long

/*

list element format

|0| |1 .. n|

[STATE][payload]

U1 ?

byte allocated/freed is address of first byte of payload

header = 1 bytes

*/

#define STATE(i) (*((U1*)(&ram[i-1]))) /*FREE,OCCUPIED*/

#define FREE 0

#define OCCUPIED 1

char *stateStr[3]={"FREE","OCCUPIED"};

#define START16 1 /*index of first 16-byte payload*/

#define START32 18 /*index of first 16-byte payload*/

#define START64 51 /*index of first 16-byte payload*/

#define START128 116 /*index of first 16-byte payload*/

#define START256 245 /*index of first 16-byte payload*/

#define START512 502 /*index of first 16-byte payload*/

#define START1024 1015 /*index of first 16-byte payload*/

#define START4096 2040 /*index of first 16-byte payload*/

#define SZ_ROW 6136 /*size of a row of entries in table*/

class SegregatedMemoryManager

{

private:

Manual Memory Management 267

C
h
a
p
te

r
4

HANDLE handle;

U1 *ram; /*memory storage*/

U4 size; /*# bytes*/

U4 nrows; /*# of 6136 byte rows*/

void initColumn(U4 index);

U4 searchColumn(U4 index);

void printColumn(U4 index);

public:

SegregatedMemoryManager(U4 nbytes);

~SegregatedMemoryManager();

void*allocate(U4 nbytes);

void release(void* addr);

void printState();

};

SegregatedMemoryManager::SegregatedMemoryManager(U4 nbytes)

{

handle = GetProcessHeap();

if(handle==NULL)

{

printf("SegregatedMemoryManager::");

printf("SegregatedMemoryManager():");

printf("invalid handle\n");

exit(1);

}

ram = (U1*)HeapAlloc(handle,HEAP_ZERO_MEMORY,nbytes);

//for portability, you could use:

//ram = (unsigned char*)malloc(nbytes);

size = nbytes;

if(size<SZ_ROW)

{

printf("SegregatedMemoryManager::");

printf("SegregatedMemoryManager():");

printf("not enough memory fed to constructor\n");

exit(1);

}

nrows = size/SZ_ROW;

initColumn(START16);

initColumn(START32);

initColumn(START64);

268 Chapter 4

initColumn(START128);

initColumn(START256);

initColumn(START512);

initColumn(START1024);

initColumn(START4096);

MSG0("SegregatedMemoryManager::");

MSG1("SegregatedMemoryManager(%lu)\n",nbytes);

return;

}/*end constructor--*/

void SegregatedMemoryManager::initColumn(U4 index)

{

U4 i;

for(i=0;i<nrows;i++)

{

STATE(index)=FREE;

index = index + SZ_ROW;

}

return;

}/*end initColumn---*/

SegregatedMemoryManager::~SegregatedMemoryManager()

{

if(HeapFree(handle,HEAP_NO_SERIALIZE,ram)==0)

{

printf("SegregatedMemoryManager::");

printf("~SegregatedMemoryManager():");

printf("could not free heap storage\n");

return;

}

//for portability, you could use:

//free(ram);

MSG0("SegregatedMemoryManager::");

MSG0("~SegregatedFitMemoryManager()");

MSG1("free ram[%lu]\n",size);

return;

}/*end destructor---*/

/*

U4 nbytes - number of bytes required

returns address of first byte of memory region allocated

(or NULL if cannot allocate a large enough block)

*/

Manual Memory Management 269

C
h
a
p
te

r
4

void* SegregatedMemoryManager::allocate(U4 nbytes)

{

U4 index;

MSG0("SegregatedMemoryManager::");

MSG1("allocate(%lu)\n",nbytes);

if(nbytes==0)

{

MSG0("SegregatedMemoryManager::");

MSG0("allocate(): zero bytes requested\n");

return(NULL);

}

if(nbytes<=16)

{

index = searchColumn(START16);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START32);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START64);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START128);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START256);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START512);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START1024);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

else if(nbytes<=32)

{

index = searchColumn(START32);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START64);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START128);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START256);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START512);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START1024);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

else if(nbytes<=64)

270 Chapter 4

{

index = searchColumn(START64);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START128);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START256);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START512);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START1024);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

else if(nbytes<=128)

{

index = searchColumn(START128);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START256);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START512);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START1024);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

else if(nbytes<=256)

{

index = searchColumn(START256);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START512);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START1024);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

else if(nbytes<=512)

{

index = searchColumn(START512);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START1024);

if(index){ return((void*)&ram[index]); }

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

else if(nbytes<=1024)

{

index = searchColumn(START1024);

if(index){ return((void*)&ram[index]); }

Manual Memory Management 271

C
h
a
p
te

r
4

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

else if(nbytes<=4096)

{

index = searchColumn(START4096);

if(index){ return((void*)&ram[index]); }

}

return(NULL);

}/*end allocation---*/

/*

search a given size range for a free element

return index

or zero if no available memory

*/

U4 SegregatedMemoryManager::searchColumn(U4 index)

{

U4 i;

for(i=0;i<nrows;i++)

{

if(STATE(index)==FREE)

{

MSG0("SegregatedMemoryManager::");

MSG1("searchColumn(): free at index %lu, ",index);

MSG1("address=%p\n",&ram[index]);

STATE(index)=OCCUPIED;

return(index);

}

index = index + SZ_ROW;

}

return(0);

}/*end searchColumn---*/

void SegregatedMemoryManager::release(void *addr)

{

U4 free; //index into ram[]

if(addr==NULL)

{

MSG0("SegregatedMemoryManager::");

MSG0("release(): cannot release NULL pointer\n");

return;

}

MSG0("SegregatedMemoryManager::");

MSG1("release(%p)\n",addr);

272 Chapter 4

//perform sanity check to make sure address is kosher

if((addr>= (void*)&ram[size]) || (addr< (void*)&ram[0]))

{

MSG0("SegregatedMemoryManager::");

MSG0("release(): address out of bounds\n");

return;

}

//translate void* addr to index in ram[]

free = (U4)(((U1*)addr) - &ram[0]);

MSG0("SegregatedMemoryManager::");

MSG1("address resolves to index %lu\n",free);

//a header always occupies first 13 bytes of storage

if(free==0)

{

MSG0("SegregatedMemoryManager::");

MSG0("release(): address in first 1st byte\n");

return;

}

//yet more sanity checks

if(STATE(free)!=OCCUPIED)

{

MSG0("SegregatedMemoryManager::");

MSG0("release(): referencing invalid region\n");

return;

}

STATE(free)=FREE;

return;

}/*end release--*/

void SegregatedMemoryManager::printState()

{

printf("[16 bytes]");

printColumn(START16);

printf("[32 bytes]");

printColumn(START32);

printf("[64 bytes]");

printColumn(START64);

Manual Memory Management 273

C
h
a
p
te

r
4

printf("[128 bytes]");

printColumn(START128);

printf("[256 bytes]");

printColumn(START256);

printf("[512 bytes]");

printColumn(START512);

printf("[1024 bytes]");

printColumn(START1024);

printf("[4096 bytes]");

printColumn(START4096);

return;

}/*end printState---*/

void SegregatedMemoryManager::printColumn(U4 index)

{

U4 i;

for(i=0;i<nrows;i++)

{

if(STATE(index)==OCCUPIED)

{

printf("[%p] ",&ram[index]);

}

index = index + SZ_ROW;

}

printf("\n");

return;

}/*end printColumn--*/

mallocV3.cpp

There were several minor alterations to this file, most notably the
presence of a different set of debugging macros. To activate debug-
ging code, uncomment the macros and compile a new build.

#include<stdio.h>

#include<stdlib.h>

#include<windows.h>

//#define DEBUG_SL_MEM_MGR

//#define DEBUG_MALLOCV3

#include<memmgr.cpp>

274 Chapter 4

/*

wrapper functions

*/

SegregatedMemoryManager *mmptr;

void initMemMgr(unsigned long totalbytes)

{

mmptr = new SegregatedMemoryManager(totalbytes);

}

void closeMemMgr()

{

delete(mmptr);

}

void *newMalloc(unsigned long size)

{

void *ptr = (*mmptr).allocate(size);

#ifdef DEBUG_MALLOCV3

(*mmptr).printState();

#endif

return(ptr);

}

void newFree(void *ptr)

{

(*mmptr).release(ptr);

#ifdef DEBUG_MALLOCV3

(*mmptr).printState();

#endif

return;

}

Tests

If you look at the main() function defined in driver.cpp, you
will see that I performed both a debug test and a performance test. I
performed a debug test to make sure the manager was doing what it
was supposed to do. If you modify my source code, I would suggest
running the debug test again to validate your changes. Once I was
sure that the memory manager was operational, I turned off debug-
ging features and ran a performance test.

The debug test is fairly simple, but at the same time, I would
take a good, hard look at what is going on. If you decide to run a

Manual Memory Management 275

C
h
a
p
te

r
4

debug test, you will want to make sure that the DEBUG_XXX macros
in mallocV3.cpp are turned on. You will also want to comment
out the PerformanceTestDriver() function call in main().

The following output was generated by the debug build of the
memory manager:

SegregatedMemoryManager::SegregatedMemoryManager(1048576)

SegregatedMemoryManager::allocate(8)

SegregatedMemoryManager::searchColumn(): free at index 1,

address=00B8000D

[16 bytes][00B8000D]

[32 bytes]

[64 bytes]

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::allocate(12)

SegregatedMemoryManager::searchColumn(): free at index 6137,

address=00B81805

[16 bytes][00B8000D] [00B81805]

[32 bytes]

[64 bytes]

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::allocate(33)

SegregatedMemoryManager::searchColumn(): free at index 51,

address=00B8003F

[16 bytes][00B8000D] [00B81805]

[32 bytes]

[64 bytes][00B8003F]

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::allocate(1)

SegregatedMemoryManager::searchColumn(): free at index 12273,

address=00B82FFD

[16 bytes][00B8000D] [00B81805] [00B82FFD]

[32 bytes]

[64 bytes][00B8003F]

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

276 Chapter 4

[4096 bytes]

SegregatedMemoryManager::allocate(122)

SegregatedMemoryManager::searchColumn(): free at index 116,

address=00B80080

[16 bytes][00B8000D] [00B81805] [00B82FFD]

[32 bytes]

[64 bytes][00B8003F]

[128 bytes][00B80080]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::allocate(50)

SegregatedMemoryManager::searchColumn(): free at index 6187,

address=00B81837

[16 bytes][00B8000D] [00B81805] [00B82FFD]

[32 bytes]

[64 bytes][00B8003F] [00B81837]

[128 bytes][00B80080]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

FREE MEMORY-------------------------------------

SegregatedMemoryManager::release(00B8000D)

SegregatedMemoryManager::address resolves to index 1

[16 bytes][00B81805] [00B82FFD]

[32 bytes]

[64 bytes][00B8003F] [00B81837]

[128 bytes][00B80080]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::release(00B82FFD)

SegregatedMemoryManager::address resolves to index 12273

[16 bytes][00B81805]

[32 bytes]

[64 bytes][00B8003F] [00B81837]

[128 bytes][00B80080]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::release(00B80080)

SegregatedMemoryManager::address resolves to index 116

[16 bytes][00B81805]

[32 bytes]

[64 bytes][00B8003F] [00B81837]

Manual Memory Management 277

C
h
a
p
te

r
4

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::release(00B8003F)

SegregatedMemoryManager::address resolves to index 51

[16 bytes][00B81805]

[32 bytes]

[64 bytes][00B81837]

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::release(00B81805)

SegregatedMemoryManager::address resolves to index 6137

[16 bytes]

[32 bytes]

[64 bytes][00B81837]

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::release(00B81837)

SegregatedMemoryManager::address resolves to index 6187

[16 bytes]

[32 bytes]

[64 bytes]

[128 bytes]

[256 bytes]

[512 bytes]

[1024 bytes]

[4096 bytes]

SegregatedMemoryManager::~SegregatedFitMemoryManager()free

ram[1048576]

Although it may seem a tad tedious, it will help you tremendously to
read the debugTest() function and then step through the previ-
ous output. It will give you an insight into what the code is doing
and how the particulars are implemented.

The performance test was conducted by commenting out
debugTest() and the debug macros in mallocV3.cpp, and
then enabling the PerformanceTestDriver() function. The
results of the performance run were:

PerformanceTest::runTest(): time whistle blown

PerformanceTest::runTest(): race has ended

msecs=5

278 Chapter 4

Trade-Offs

Compared to the sequential fit technique, the segregated list imple-
mentation is blazing fast. However, this does not come without a
cost. The segregated list approach demands a large initial down pay-
ment of memory. The fact that only certain block sizes are provided
can also lead to severe internal fragmentation. For example, a
1,024-byte block could end up being used to service a 32-byte
request.

Another issue resulting from fixed block sizes is that there is a
distinct ceiling placed on the size of the memory region that can be
allocated. In my implementation, you cannot allocate a block larger
than 4,096 bytes. If, for some reason, you need a 4,097-byte block of
memory, you are plain out of luck. There are variations of my segre-
gated list approach, such as the buddy system, that allow certain
forms of splitting and merging to deal with this size-limit problem.

Performance Comparison

Let us revisit all three of the previous implementations. In each of
the performance tests, the resident memory manager was given
1MB of storage and was asked to service 1,024 consecutive mem-
ory allocation/release operations. The score card is provided in
Table 4.5.

Table 4.5

Manager Milliseconds

bitmapped 856

sequential fit 35

segregated list 5

By a long shot, the bitmapped memory manager was the worst.
Now you know why almost nobody uses it. The segregated memory
manager outperformed the sequential fit memory manager. How-
ever, there are significant trade-offs that might make the sequential
fit method preferable to the segregated list method.

One common theme you will see in your journey through com-
puter science is the storage-versus-speed trade-off. If you increase
the amount of available memory storage, you can usually make
something run faster.

Here is an example: If you rewrite all of the functions in a pro-
gram as inline macros, you can increase the speed at which the
program executes. This is because the processor doesn’t have to

Manual Memory Management 279

C
h
a
p
te

r
4

waste time jumping around to different memory locations. In addi-
tion, because execution will not frequently jump to a nonlocal spot
in memory, the processor will be able to spend much of its time exe-
cuting code in the cache.

Likewise, you can make a program smaller by isolating every bit
of redundant code and placing it in its own function. While this will
decrease the total number of machine instructions, this tactic will
make a program slower because not only does the processor spend
most of its time jumping around memory, but the processor’s cache
will also need to be constantly refreshed.

This is the type of situation that we face with the segregated list
and sequential fit approaches. The segregated list approach is much
faster, but it also wastes a lot of memory. The sequential fit algo-
rithm, on the other hand, decreases the amount of wasted storage at
the expense of execution time. This leads me to think that the seg-
regated list approach would be useful for embedded systems that do
not typically have much memory to spend. The segregated storage
approach might be suited for large enterprise servers that are run-
ning high-performance transaction processing software.

280 Chapter 4

Chapter 5

Automatic Memory
Management

Automatic memory managers keep track of the memory that is allo-
cated from the heap so that the programmer is absolved of the
responsibility. This makes life easier for the programmer. In fact,
not only does it make the programmer’s job easier, but it also elimi-
nates other nasty problems, like memory leaks and dangling
pointers. The downside is that automatic memory managers are
much more difficult to build because they must incorporate all the
extra bookkeeping functionality.

NOTE Automatic memory managers are often referred to as gar-

bage collectors. This is because blocks of memory in the heap that
were allocated by a program, but which are no longer referenced by
the program, are known as garbage. It is the responsibility of a gar-
bage collector to monitor the heap and free garbage so that it can be
recycled for other allocation requests.

Garbage Collection Taxonomy

Taking out the trash is a dance with two steps:

1. Identifying garbage in the heap

2. Recycling garbage once it is found

The different garbage collection algorithms are distinguished in
terms of the mechanisms that they use to implement these two
steps. For example, garbage can be identified by reference counting

or by tracing. Most garbage collectors can be categorized into one of
these two types.

Reference counting collectors identify garbage by maintaining a
running tally of the number of pointers that reference each block of
allocated memory. When the number of references to a particular
block of memory reaches zero, the memory is viewed as garbage

281

and reclaimed. There are a number of types of reference counting
algorithms, each one implementing its own variation of the counting
mechanism (i.e., simple reference counting, deferred reference
counting, 1-bit reference counting, etc.).

Tracing garbage collectors traverse the application run-time envi-
ronment (i.e., registers, stack, heap, data section) in search of
pointers to memory in the heap. Think of tracing collectors as
pointer hunter-gatherers. If a pointer is found somewhere in the
run-time environment, the heap memory that is pointed to is
assumed to be “alive” and is not recycled. Otherwise, the allocated
memory is reclaimed. There are several subspecies of tracing gar-
bage collectors, including mark-sweep, mark-compact, and copying
garbage collectors.

An outline of different automatic memory management
approaches is provided in Figure 5.1.

In this chapter I am going to examine a couple of garbage collection
algorithms and offer sample implementations. Specifically, I will
implement a garbage collector that uses reference counting and
another that uses tracing. As in the previous chapter, I will present
these memory managers as drop-in replacements for the C standard
library malloc() and free()routines.

In an attempt to keep the learning threshold low, I will forego
extensive optimization and performance enhancements in favor of
keeping my source code simple. I am not interested in impressing
you with elaborate syntax kung fu; my underlying motivation is to
make it easy for you to pick up my ideas and internalize them. If you
are interested in taking things to the next level, you can follow up
on some of the suggestions and ideas that I discuss at the end of the
chapter.

282 Chapter 5

Figure 5.1

malloc() Version 4: Reference Counting

Theory

The reference count approach keeps track of the number of pointers
that hold the address of a given block of memory. The reference
count of a block of memory is incremented every time that its
address is assigned or copied to another pointer. The reference
count of a memory block is decremented when a pointer holding its
address is overwritten, goes out of scope, or is recycled. When the
reference count reaches a value of zero, the corresponding memory
is reclaimed.

Consider the following short program:

#include<stdlib.h>

void main()

{

char *cptr1;

char *cptr2;

char *cptr3;

cptr1 = (char*)malloc(16); //increment memory_block_1

cptr2 = cptr1; //increment memory_block_1

cptr3 = (char*)malloc(16); //increment memory_block_2

cptr2 = cptr3; //increment memory_block_2,

//decrement memory_block_1

//decrement memory_block_2 (cptr3 out of scope)

//decrement memory_block_2 (cptr2 out of scope)

//decrement memory_block_1 (cptr1 out of scope)

return;

}

Each reference increment and decrement has been marked with a
comment to give you an idea of what would need to be done behind
the scenes.

The one line:

cptr2 = cptr3;

increments the reference count to memory_block_2 because its
address is being copied into cptr2. On the other hand, the refer-
ence count to memory_block_1 is decremented because its
address in cptr2 is being overwritten.

Automatic Memory Management 283

C
h
a
p
te

r
5

Reference counting is a technique that requires the cooperation
of the compiler. Specifically, the compiler will need to recognize
when it is necessary to increment or decrement a reference count
and emit special code to do the job. For example, normally, the
native code generated for:

cptr2 = cptr1;

would resemble something like:

mov eax, DWORD PTR _cptr1$[ebp]

mov DWORD PTR _cptr2$[ebp], eax

However, because the reference count to memory_block_1 needs
to be maintained, the compiler will need to generate something like:

mov eax, DWORD PTR _cptr1$[ebp]

mov DWORD PTR _cptr2$[ebp], eax

mov ecx, DWORD PTR _cptr1$[ebp]

push ecx

call _increment

add esp, 4

Likewise, when a pointer goes out of scope or is overwritten, the
compiler will need to emit something that looks like:

mov ecx, DWORD PTR _cptr3$[ebp]

push ecx

call _decrement

add esp, 4

NOTE The alternative to emitting extra instructions to perform the
reference counting is to use an interpreter, or virtual machine, which
can keep pointer tallies without help from the compiler.

Implementation

I decided to implement a reference counting garbage collector by
modifying the sequential fit implementation in Chapter 4. As with
the sequential fit approach, memory is arranged as a series of blocks
where each block is prefixed by a 16-byte header (see Figure 5.2).

284 Chapter 5

Figure 5.2

The STATE field, which was a byte in the sequential fit implementa-
tion, has been replaced by a 32-bit field called COUNT. This COUNT
field keeps track of the number of references to a block of memory.

My implementation of the reference counting memory manager
required four files:

Table 5.1

File Use

driver.cpp contains main(), is the scene of the crime

mallocV4.cpp newMalloc(), newFree() wrappers (4th version)

perform.cpp implements the PerformanceTest class

memmgr.cpp implements the RefCountMemoryManager class

driver.cpp

This file contains the main() entry point. You can build my imple-
mentation to execute a diagnostic test or a performance test. To
build the diagnostic version, you will need to comment out the
PerformanceTestDriver() invocation and uncomment the
debugTest() invocation. You will also need to activate the
DEBUG_XXX macros in the mallocV4.cpp file.

Because the compiler that I used has not been engineered to
emit the extra instructions needed to support reference counting, I
had to manually insert the code. Throughout debugTest(), I
added inc() and dec() function calls. I also added comments
indicating that these calls should have been generated by the
compiler.

#include<mallocV4.cpp>

#include<perform.cpp>

/*

not using a modified compiler, so will need to insert

reference counting code manually

*/

void debugTest()

{

void *ptr[6];

void *ptr1;

void *ptr2;

void *ptr3;

unsigned long allocs[6]={8,12,33,1,122,50};

int i;

initMemMgr(270);

Automatic Memory Management 285

C
h
a
p
te

r
5

for(i=0;i<6;i++)

{

ptr[i] = newMalloc(allocs[i]);

if(ptr[i]==NULL){ printf("ptr[%lu]==NULL!\n",i); }

}

//copying addresses

printf("copying ptr[0]\n");

ptr1 = ptr[0];

(*mmptr).inc(ptr[0]); //compiler insert

printf("copying ptr[1]\n");

ptr3 = ptr[1];

(*mmptr).inc(ptr[1]); //compiler insert

printf("copying ptr1\n");

ptr2 = ptr1;

(*mmptr).inc(ptr1); //compiler insert

//overwritting

printf("overwriting ptr1 with ptr3\n");

(*mmptr).dec(ptr2); //compiler insert

ptr2 = ptr3;

(*mmptr).inc(ptr3); //compiler insert

//locals going out of scope, need to decrement

printf("leaving scope\n");

for(i=0;i<6;i++)

{

(*mmptr).dec(ptr[i]); //compiler insert

}

(*mmptr).dec(ptr1); //compiler insert

(*mmptr).dec(ptr2); //compiler insert

(*mmptr).dec(ptr3); //compiler insert

closeMemMgr();

return;

}/*end debugTest--*/

void main()

{

//for the debug test, should activate debug macros in

mallocVx.cpp

//debugTest();

//for the performance test, should comment out debug macros

286 Chapter 5

PerformanceTestDriver();

return;

}/*end main---*/

mallocV4.cpp

Because we are now in the domain of automatic memory manage-
ment, I disabled the newFree() function that has traditionally
been defined in this file. The newMalloc() function is still opera-
tional, albeit using a different underlying object. If you wish to
perform a debug/diagnostic test, you will need to activate the
DEBUG_XXX macros.

#include<stdio.h>

#include<stdlib.h>

#include<windows.h>

//#define DEBUG_RC_MEM_MGR

//#define DEBUG_MALLOCV4

#include<memmgr.cpp>

/*

wrapper functions

*/

RefCountMemoryManager *mmptr;

void initMemMgr(unsigned long totalbytes)

{

mmptr = new RefCountMemoryManager(totalbytes);

}

void closeMemMgr()

{

delete(mmptr);

}

void *newMalloc(unsigned long size)

{

void *ptr = (*mmptr).allocate(size);

#ifdef DEBUG_MALLOCV4

(*mmptr).printState();

#endif

return(ptr);

}

Automatic Memory Management 287

C
h
a
p
te

r
5

void newFree(void *ptr)

{

printf("newFree(): cannot free %p\n",ptr);

printf("newFree(): not implemented, using garbage

collector\n");

return;

}

perform.cpp

The PerformanceTest class defined in this file has not been
modified very much. The only thing that changed was the imple-
mentation of the runTest() member function. Specifically, I had
to remove the calls to newFree(), which are no longer valid, and
add in the dec() invocations that the compiler should normally
emit.

unsigned long PerformanceTest::runTest()

{

unsigned long *allocs;

unsigned long i;

unsigned long ticks1,ticks2;

char **addr; /*pointer to an array of pointers*/

/*create array of address holders to stockpile malloc()

returns*/

addr = (char **)malloc(sizeof(char *)*nAllocations);

if(addr==NULL)

{

printf("could not allocate address repository\n");

exit(1);

}

/*create stream of allocation values*/

allocs = (unsigned long *)malloc(sizeof(long)*nAllocations);

if(allocs==NULL)

{

printf("could not allocate malloc() request stream\n");

exit(1);

}

getAllocArray(allocs);

/*start timer and do some work*/

initMemMgr(1024*1024);

288 Chapter 5

printf("PerformanceTest::runTest(): time whistle blown\n");

ticks1 = GetTickCount();

for(i=0;i<nAllocations;i++)

{

//printf("%lu\n",allocs[i]);

addr[i] = (char *)newMalloc(allocs[i]);

if(addr[i]==NULL)

{

printf("mallco()=addr[%lu]=%lu failed\n",i,addr[i]);

exit(1);

}

}

//array goes out of scope

for(i=0;i<nAllocations;i++)

{

(*mmptr).dec(addr[i]);

}

ticks2 = GetTickCount();

printf("PerformanceTest::runTest(): race has ended\n");

closeMemMgr();

free(addr);

free(allocs);

return(ticks2-ticks1);

}/*end runTest--*/

memmgr.cpp

The RefCountMemoryManager class defined in this file is
basically an extended version of the SequentialFitMemory-
Manager. To give you an idea of how this class operates, I have
enumerated the possible paths of execution for this class in Figure
5.3 (on the following page).

Most of the action happens as a result of the allocate() or
dec() functions being called. Both the inc() and dec() func-
tions perform a series of sanity checks before they modify the heap
block list. The inc() function increments the reference count of a
memory block, and the dec() function decrements the reference
count of a memory block. As you can see from Figure 5.3, the
release() function has been made subservient to the dec()
function.

Automatic Memory Management 289

C
h
a
p
te

r
5

#ifdef DEBUG_RC_MEM_MGR

#define MSG0(arg); printf(arg);

#define MSG1(arg1,arg2); printf(arg1,arg2);

#else

#define MSG0(arg);

#define MSG1(arg1,arg2);

#endif

#define U1 unsigned char

#define U4 unsigned long

/*

list element format

|0 3||4 7||8 11||12 15||16 .. n|

[PREV][NEXT][COUNT][SIZE][payload]

U4 U4 U4 U4 ?

byte allocated/freed is address of first byte of payload

header = 16 bytes

byte[0] is occupied by header data, so is always used, thus

first link has prev=0 (0 indicates not used)

last link has next=0

*/

#define PREV(i) (*((U4*)(&ram[i-16])))

#define NEXT(i) (*((U4*)(&ram[i-12])))

#define COUNT(i) (*((U1*)(&ram[i-8]))) /*# references*/

#define SIZE(i) (*((U4*)(&ram[i-4])))

#define FREE 0 /*free blocks have COUNT=0*/

290 Chapter 5

Figure 5.3

#define START 16 /*address of first payload*/

#define SZ_HEADER 16

class RefCountMemoryManager

{

private:

HANDLE handle;

U1 *ram; /*memory storage*/

U4 size;

int checkAddress(void *addr);

int checkIndex(U4 free);

void release(U4 free);

void split(U4 addr,U4 nbytes);

void merge(U4 prev,U4 current,U4 next);

public:

RefCountMemoryManager(U4 nbytes);

~RefCountMemoryManager();

void*allocate(U4 nbytes);

void inc(void *addr);

void dec(void *addr);

void printState();

};

RefCountMemoryManager::RefCountMemoryManager(U4 nbytes)

{

handle = GetProcessHeap();

if(handle==NULL)

{

printf("RefCountMemoryManager::");

printf("RefCountMemoryManager():");

printf("invalid handle\n");

exit(1);

}

ram = (U1*)HeapAlloc(handle,HEAP_ZERO_MEMORY,nbytes);

//for portability, you could use:

//ram = (unsigned char*)malloc(nbytes);

size = nbytes;

if(size<=SZ_HEADER)

{

printf("RefCountMemoryManager::");

printf("RefCountMemoryManager():");

printf("not enough memory fed to constructor\n");

Automatic Memory Management 291

C
h
a
p
te

r
5

exit(1);

}

PREV(START)=0;

NEXT(START)=0;

COUNT(START)=0;

SIZE(START)=size-SZ_HEADER;

MSG0("RefCountMemoryManager::");

MSG1("RefCountMemoryManager(%lu)\n",nbytes);

return;

}/*end constructor--*/

RefCountMemoryManager::~RefCountMemoryManager()

{

if(HeapFree(handle,HEAP_NO_SERIALIZE,ram)==0)

{

printf("RefCountMemoryManager::");

printf("~RefCountMemoryManager():");

printf("could not free heap storage\n");

return;

}

//for portability, you could use:

//free(ram);

MSG0("RefCountMemoryManager::");

MSG0("~RefCountMemoryManager()");

MSG1("free ram[%lu]\n",size);

return;

}/*end destructor---*/

/*

U4 nbytes - number of bytes required

returns address of first byte of memory region allocated

(or NULL if cannot allocate a large enough block)

*/

void* RefCountMemoryManager::allocate(U4 nbytes)

{

U4 current;

MSG0("RefCountMemoryManager::");

MSG1("allocate(%lu)\n",nbytes);

if(nbytes==0)

{

MSG0("RefCountMemoryManager::");

292 Chapter 5

MSG0("allocate(): zero bytes requested\n");

return(NULL);

}

//traverse the linked list, starting with first element

current = START;

while(NEXT(current)!=0)

{

if((SIZE(current)>=nbytes)&&(COUNT(current)==FREE))

{

split(current,nbytes);

return((void*)&ram[current]);

}

current = NEXT(current);

}

//handle the last block (which has NEXT(current)=0)

if((SIZE(current)>=nbytes)&&(COUNT(current)==FREE))

{

split(current,nbytes);

return((void*)&ram[current]);

}

return(NULL);

}/*end allocation---*/

/*

breaks [free] region into [alloc][free] pair, if possible

*/

void RefCountMemoryManager::split(U4 addr, U4 nbytes)

{

/*

want payload to have enough room for

nbytes = size of request

SZ_HEADER = header for new region

SZ_HEADER = payload for new region (arbitrary 16 bytes)

*/

if(SIZE(addr)>= nbytes+SZ_HEADER+SZ_HEADER)

{

U4 oldnext;

U4 oldprev;

U4 oldsize;

U4 newaddr;

MSG0("RefCountMemoryManager::");

Automatic Memory Management 293

C
h
a
p
te

r
5

MSG0("split(): split=YES\n");

oldnext=NEXT(addr);

oldprev=PREV(addr);

oldsize=SIZE(addr);

newaddr = addr + nbytes + SZ_HEADER;

NEXT(addr)=newaddr;

PREV(addr)=oldprev;

COUNT(addr)=1;

SIZE(addr)=nbytes;

NEXT(newaddr)=oldnext;

PREV(newaddr)=addr;

COUNT(newaddr)=FREE;

SIZE(newaddr)=oldsize-nbytes-SZ_HEADER;

}

else

{

MSG0("RefCountMemoryManager::");

MSG0("split(): split=NO\n");

COUNT(addr)=1;

}

return;

}/*end split--*/

int RefCountMemoryManager::checkAddress(void *addr)

{

if(addr==NULL)

{

MSG0("RefCountMemoryManager::");

MSG0("checkAddress(): cannot release NULL pointer\n");

return(FALSE);

}

MSG0("RefCountMemoryManager::");

MSG1("checkAddress(%lu)\n",addr);

//perform sanity check to make sure address is kosher

if((addr>= (void*)&ram[size]) || (addr< (void*)&ram[0]))

{

MSG0("RefCountMemoryManager::");

MSG0("checkAddress(): address out of bounds\n");

return(FALSE);

}

return(TRUE);

294 Chapter 5

}/*end checkAddress---*/

int RefCountMemoryManager::checkIndex(U4 free)

{

//a header always occupies first SZ_HEADER bytes of storage

if(free<SZ_HEADER)

{

MSG0("RefCountMemoryManager::");

MSG0("checkIndex(): address in first 16 bytes\n");

return(FALSE);

}

//more sanity checks

if((COUNT(free)==FREE) || //region if free

(PREV(free)>=free) || //previous element not previous

(NEXT(free)>=size) || //next is beyond the end

(SIZE(free)>=size) || //size greater than whole

(SIZE(free)==0)) //no size at all

{

MSG0("RefCountMemoryManager::");

MSG0("checkIndex(): referencing invalid region\n");

return(FALSE);

}

return(TRUE);

}/*end checkIndex---*/

void RefCountMemoryManager::inc(void *addr)

{

U4 free; //index into ram[]

if(checkAddress(addr)==FALSE){ return; }

//translate void* addr to index in ram[]

free = (U4)(((U1*)addr) - &ram[0]);

MSG0("RefCountMemoryManager::");

MSG1("inc(): address resolves to index %lu\n",free);

if(checkIndex(free)==FALSE){ return; }

COUNT(free) = COUNT(free)+1;

MSG0("RefCountMemoryManager::");

MSG1("inc(): incrementing ram[%lu] ",free);

MSG1("to %lu\n",COUNT(free));

return;

Automatic Memory Management 295

C
h
a
p
te

r
5

}/*end inc--*/

void RefCountMemoryManager::dec(void *addr)

{

U4 free; //index into ram[]

if(checkAddress(addr)==FALSE){ return; }

//translate void* addr to index in ram[]

free = (U4)(((U1*)addr) - &ram[0]);

MSG0("RefCountMemoryManager::");

MSG1("dec(): address resolves to index %lu\n",free);

if(checkIndex(free)==FALSE){ return; }

COUNT(free) = COUNT(free)-1;

MSG0("RefCountMemoryManager::");

MSG1("dec(): decrementing ram[%lu] ",free);

MSG1("to %lu\n",COUNT(free));

if(COUNT(free)==FREE)

{

MSG0("RefCountMemoryManager::");

MSG1("dec(): releasing ram[%lu]\n",free);

release(free);

}

return;

}/*end dec--*/

void RefCountMemoryManager::release(U4 free)

{

merge(PREV(free),free,NEXT(free));

#ifdef DEBUG_RC_MEM_MGR

printState();

#endif

return;

}/*end release--*/

/*

4 cases (F=free O=occupied)

FOF -> [F]

OOF -> O[F]

FOO -> [F]O

OOO -> OFO

*/

296 Chapter 5

void RefCountMemoryManager::merge(U4 prev,U4 current,U4 next)

{

/*

first handle special cases of region at end(s)

prev=0 low end

next=0 high end

prev=0 and next=0 only 1 list element

*/

if(prev==0)

{

if(next==0)

{

COUNT(current)=FREE;

}

else if(COUNT(next)!=FREE)

{

COUNT(current)=FREE;

}

else if(COUNT(next)==FREE)

{

U4 temp;

MSG0("RefCountMemoryManager::merge():");

MSG0("merging to NEXT\n");

COUNT(current)=FREE;

SIZE(current)=SIZE(current)+SIZE(next)+SZ_HEADER;

NEXT(current)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=current; }

}

}

else if(next==0)

{

if(COUNT(prev)!=FREE)

{

COUNT(current)=FREE;

}

else if(COUNT(prev)==FREE)

{

MSG0("RefCountMemoryManager::merge():");

MSG0("merging to PREV\n");

SIZE(prev)=SIZE(prev)+SIZE(current)+SZ_HEADER;

NEXT(prev)=NEXT(current);

}

}

/* now we handle 4 cases */

Automatic Memory Management 297

C
h
a
p
te

r
5

else if((COUNT(prev)!=FREE)&&(COUNT(next)!=FREE))

{

COUNT(current)=FREE;

}

else if((COUNT(prev)!=FREE)&&(COUNT(next)==FREE))

{

U4 temp;

MSG0("RefCountMemoryManager::merge():");

MSG0("merging to NEXT\n");

COUNT(current)=FREE;

SIZE(current)=SIZE(current)+SIZE(next)+SZ_HEADER;

NEXT(current)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=current; }

}

else if((COUNT(prev)==FREE)&&(COUNT(next)!=FREE))

{

MSG0("RefCountMemoryManager::merge():");

MSG0("merging to PREV\n");

SIZE(prev)=SIZE(prev)+SIZE(current)+SZ_HEADER;

NEXT(prev)=NEXT(current);

PREV(next)=prev;

}

else if((COUNT(prev)==FREE)&&(COUNT(next)==FREE))

{

U4 temp;

MSG0("RefCountMemoryManager::merge():");

MSG0("merging with both sides\n");

SIZE(prev)=SIZE(prev)+

SIZE(current)+SZ_HEADER+

SIZE(next)+SZ_HEADER;

NEXT(prev)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=prev; }

}

return;

}/*end merge--*/

void RefCountMemoryManager::printState()

{

U4 i;

U4 current;

i=0;

298 Chapter 5

current=START;

while(NEXT(current)!=0)

{

printf("%lu) [P=%lu]",i,PREV(current));

printf("[addr=%lu]",current);

if(COUNT(current)==FREE){ printf("[FREE]"); }

else{ printf("[Ct=%lu]",COUNT(current)); }

printf("[Sz=%lu]",SIZE(current));

printf("[N=%lu]\n",NEXT(current));

current = NEXT(current);

i++;

}

//print the last list element

printf("%lu) [P=%lu]",i,PREV(current));

printf("[addr=%lu]",current);

if(COUNT(current)==FREE){ printf("[FREE]"); }

else{ printf("[Ct=%lu]",COUNT(current)); }

printf("[Sz=%lu]",SIZE(current));

printf("[N=%lu]\n",NEXT(current));

return;

}/*end printState---*/

Tests

I performed two different tests against this memory manager. A
debug test was performed to make sure that the manager was doing
what it was supposed to do. If you modify my source code, I would
suggest running the debug test again to validate your changes. Once
I was sure that the memory manager was operational, I turned off
debugging features and ran a performance test.

The debug test was performed by executing the code in the
debugTest() function defined in the driver.cpp source file. I
keep things fairly simple, but at the same time, I take a good, hard
look at what is going on. If you decide to run a debug test, you will
want to make sure that the DEBUG_XXX macros in
mallocV4.cpp are turned on. You will also want to comment out
the PerformanceTestDriver() function call in main().

The following output was generated by the debug build of the
memory manager:

RefCountMemoryManager::RefCountMemoryManager(270)

RefCountMemoryManager::allocate(8)

RefCountMemoryManager::split(): split=YES

Automatic Memory Management 299

C
h
a
p
te

r
5

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][FREE][Sz=230][N=0]

RefCountMemoryManager::allocate(12)

RefCountMemoryManager::split(): split=YES

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=1][Sz=12][N=68]

2) [P=40][addr=68][FREE][Sz=202][N=0]

RefCountMemoryManager::allocate(33)

RefCountMemoryManager::split(): split=YES

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=1][Sz=12][N=68]

2) [P=40][addr=68][Ct=1][Sz=33][N=117]

3) [P=68][addr=117][FREE][Sz=153][N=0]

RefCountMemoryManager::allocate(1)

RefCountMemoryManager::split(): split=YES

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=1][Sz=12][N=68]

2) [P=40][addr=68][Ct=1][Sz=33][N=117]

3) [P=68][addr=117][Ct=1][Sz=1][N=134]

4) [P=117][addr=134][FREE][Sz=136][N=0]

RefCountMemoryManager::allocate(122)

RefCountMemoryManager::split(): split=NO

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=1][Sz=12][N=68]

2) [P=40][addr=68][Ct=1][Sz=33][N=117]

3) [P=68][addr=117][Ct=1][Sz=1][N=134]

4) [P=117][addr=134][Ct=1][Sz=136][N=0]

RefCountMemoryManager::allocate(50)

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=1][Sz=12][N=68]

2) [P=40][addr=68][Ct=1][Sz=33][N=117]

3) [P=68][addr=117][Ct=1][Sz=1][N=134]

4) [P=117][addr=134][Ct=1][Sz=136][N=0]

ptr[5]==NULL!

copying ptr[0]

RefCountMemoryManager::checkAddress(5439516)

RefCountMemoryManager::inc(): address resolves to index 16

RefCountMemoryManager::inc(): incrementing ram[16] to 2

copying ptr[1]

RefCountMemoryManager::checkAddress(5439540)

RefCountMemoryManager::inc(): address resolves to index 40

RefCountMemoryManager::inc(): incrementing ram[40] to 2

copying ptr1

RefCountMemoryManager::checkAddress(5439516)

RefCountMemoryManager::inc(): address resolves to index 16

RefCountMemoryManager::inc(): incrementing ram[16] to 3

overwriting ptr1 with ptr3

RefCountMemoryManager::checkAddress(5439516)

RefCountMemoryManager::dec(): address resolves to index 16

RefCountMemoryManager::dec(): decrementing ram[16] to 2

RefCountMemoryManager::checkAddress(5439540)

300 Chapter 5

RefCountMemoryManager::inc(): address resolves to index 40

RefCountMemoryManager::inc(): incrementing ram[40] to 3

leaving scope

RefCountMemoryManager::checkAddress(5439516)

RefCountMemoryManager::dec(): address resolves to index 16

RefCountMemoryManager::dec(): decrementing ram[16] to 1

RefCountMemoryManager::checkAddress(5439540)

RefCountMemoryManager::dec(): address resolves to index 40

RefCountMemoryManager::dec(): decrementing ram[40] to 2

RefCountMemoryManager::checkAddress(5439568)

RefCountMemoryManager::dec(): address resolves to index 68

RefCountMemoryManager::dec(): decrementing ram[68] to 0

RefCountMemoryManager::dec(): releasing ram[68]

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=2][Sz=12][N=68]

2) [P=40][addr=68][FREE][Sz=33][N=117]

3) [P=68][addr=117][Ct=1][Sz=1][N=134]

4) [P=117][addr=134][Ct=1][Sz=136][N=0]

RefCountMemoryManager::checkAddress(5439617)

RefCountMemoryManager::dec(): address resolves to index 117

RefCountMemoryManager::dec(): decrementing ram[117] to 0

RefCountMemoryManager::dec(): releasing ram[117]

RefCountMemoryManager::merge():merging to PREV

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=2][Sz=12][N=68]

2) [P=40][addr=68][FREE][Sz=50][N=134]

3) [P=68][addr=134][Ct=1][Sz=136][N=0]

RefCountMemoryManager::checkAddress(5439634)

RefCountMemoryManager::dec(): address resolves to index 134

RefCountMemoryManager::dec(): decrementing ram[134] to 0

RefCountMemoryManager::dec(): releasing ram[134]

RefCountMemoryManager::merge():merging to PREV

0) [P=0][addr=16][Ct=1][Sz=8][N=40]

1) [P=16][addr=40][Ct=2][Sz=12][N=68]

2) [P=40][addr=68][FREE][Sz=202][N=0]

RefCountMemoryManager::checkAddress(): cannot release NULL

pointer

RefCountMemoryManager::checkAddress(5439516)

RefCountMemoryManager::dec(): address resolves to index 16

RefCountMemoryManager::dec(): decrementing ram[16] to 0

RefCountMemoryManager::dec(): releasing ram[16]

0) [P=0][addr=16][FREE][Sz=8][N=40]

1) [P=16][addr=40][Ct=2][Sz=12][N=68]

2) [P=40][addr=68][FREE][Sz=202][N=0]

RefCountMemoryManager::checkAddress(5439540)

RefCountMemoryManager::dec(): address resolves to index 40

RefCountMemoryManager::dec(): decrementing ram[40] to 1

RefCountMemoryManager::checkAddress(5439540)

RefCountMemoryManager::dec(): address resolves to index 40

RefCountMemoryManager::dec(): decrementing ram[40] to 0

RefCountMemoryManager::dec(): releasing ram[40]

Automatic Memory Management 301

C
h
a
p
te

r
5

RefCountMemoryManager::merge():merging with both sides

0) [P=0][addr=16][FREE][Sz=254][N=0]

RefCountMemoryManager::~RefCountMemoryManager()free ram[270]

The performance test was conducted by commenting out
debugTest() and the debug macros in mallocV4.cpp, and
then enabling the PerformanceTestDriver() function. The
results of the performance run were, well, surprising:

PerformanceTest::runTest(): time whistle blown

PerformanceTest::runTest(): race has ended

msecs=30

Not bad.

Trade-Offs

The reference counting approach to garbage collection is convenient
because it offers a type of collection that is incremental, which is to
say that the bookkeeping needed to reclaim garbage is done in
short, bite-sized bursts. This allows the memory manager to do its
jobs without introducing a significant time delay into the program’s
critical path. Some garbage collectors wait to do everything at once
so that users may experience a noticeable pause while a program
runs.

While the reference counting approach is fast, it also suffers from
some serious problems. For example, reference counting garbage
collectors cannot reclaim objects that reference each other. This is
known as a cycle (see Figure 5.4).

Let us assume that we have two heap-allocated variables, A and B,
which reference one another. For example:

#include<stdlib.h>

#include<stdio.h>

302 Chapter 5

Figure 5.4

void function()

{

void **A; //points to value storing an address

void **B;

//create 2 blocks in heap that can store addresses

A = (void*)malloc(sizeof(void*));

B = (void*)malloc(sizeof(void*));

// A's reference count = 1

// B's reference count = 1

(*A) = B; //set A's heap value to the address of B

(*B) = A; //set B's heap value to the address of A

// A's reference count = 2

// B's reference count = 2

printf("address A=%p\t",A);

printf("value in A=%p\n\n",*A);

printf("address B=%p\t",B);

printf("value in B=%p\n",*B);

//decrement A's reference count to 1 (A goes out of scope)

//decrement B's reference count to 1 (B goes out of scope)

return;

}

void main()

{

function();

return;

}

If the variable A goes out of scope, its heap storage will still not be
reclaimed. This is because B still references it so that its reference
count is 1. The same holds true for B. Because of the pointer tom-
foolery performed, and because of the nature of reference counting,
neither of these blocks of memory will ever have their storage
reclaimed because their reference counts will never be able to reach
zero.

NOTE The ugly truth is that the inability to handle cyclic references
is what allows reference counting schemes to develop memory leaks.
This is one reason why most run-time systems, like the Java virtual
machine, avoid reference counting garbage collection.

Automatic Memory Management 303

C
h
a
p
te

r
5

Another problem with reference counting schemes is that functions
with a lot of local variables can cause the memory manager to per-
form an excessive amount of reference count incrementing and
decrementing.

One solution is to use deferred reference counting, where the
memory manager does not include local variables when it maintains
reference counts. The problem with this is that you cannot be sure
if a memory block can be reclaimed when its reference count is
zero. This is because there might still be one or more local variables
referencing the memory block. If you reclaim too early, you will end
up with a bunch of dangling pointers! This is why most memory
managers that implement deferred reference counting will use it in
conjunction with a tracing algorithm that can survey the stack for
local variable pointers.

Another reference counting technique is to use a COUNT field
that is a single bit in size. This is known as 1-bit reference counting.
The gist of this technique is that the number of references to a
block of memory is always zero, one, or many. So the 1-bit COUNT
field will be zero or one. When it is one, there may be one or more
references. In many cases, there is only a single reference and gar-
bage collection is very quick. However, there also may be many
references, which is why the 1-bit reference counting technique is
usually used with another tracing garbage collector.

malloc() Version 5: Mark-Sweep

Theory

The operation of automatic memory managers consists of two
phases: locating memory garbage and reclaiming that garbage. The
mark-sweep approach to garbage collection is named after how it
implements these two phases. The mark-sweep technique belongs
to the tracing school of garbage collection. This means that a
mark-sweep collector takes an active role in ferreting out memory
references instead of relying on the compiler to do all the work.

The mark phase involves taking all the currently occupied mem-
ory blocks and marking them as “testing” because, for the moment,
we do not know which memory blocks are genuinely occupied and
which memory blocks are garbage. Next, the mark-sweep collector
looks through the application’s memory space searching for pointers
to the heap. Any memory blocks that still have pointers referencing
them are allowed to return to “occupied” status.

304 Chapter 5

The remaining “testing” blocks are assumed to be garbage and
collected. The sweep phase involves moving through the heap and
releasing these “testing” blocks. In other words, the memory man-
ager sweeps all of the garbage back into the “free” bucket.

The basic mark-sweep dance steps are displayed in Figure 5.5.

As mentioned in Chapter 3, most applications have four types of
sections: code sections, data sections, stack sections, and one or
more heaps. Because code sections tend to be designated as exe-
cute-only memory areas, only the stack, heap, and data section of an
application can be scanned for pointers (see Figure 5.6). In my
implementation, I scan only the heap and the stack.

Automatic Memory Management 305

C
h
a
p
te

r
5

Figure 5.5

Figure 5.6

QUESTION
OK, so if the manager looks for pointers, what does a pointer

look like?

ANSWER
Some compilers add a special tag to pointers. The problem

with this approach is that the tag consumes part of a pointer’s
storage space and prevents a pointer from being capable of
referencing the full address space. I decided that in my imple-
mentation, I would use a conservative garbage collection approach
and consider any 32-bit value to be a potential pointer. This basi-
cally means that I have to scan memory byte-by-byte to
enumerate every possible 32-bit value (see Figure 5.7).

In my implementation, each memory block header has a STATE
field. This field is 8 bits in size and may be in one of three states:
Free, Occupied, Testing. The remaining fields are similar to those
used by the sequential fit manual memory manager (see Figure 5.8).

There are a couple of policy decisions that a mark-sweep collec-
tor has to make. Specifically, a mark-sweep memory manager has to
decide which parts of memory it is going to monitor and when it is
going sweep them to reclaim garbage.

I decided in my implementation that I would search for pointers
in the heap and the stack. This would allow me to search through an
application’s local variables and dynamically allocated storage. As far
as deciding when to garbage collect, I decided to use a counter vari-
able called tick that would invoke the garbage collection algorithm
after reaching a certain value (stored in a variable called period).

306 Chapter 5

Figure 5.7

The programmer can configure the value of period so that they
may control how often garbage collection occurs.

I also provide a forceCollection() function that can be
used to force the memory manager to perform a sweep of memory.

NOTE This function does not suggest that garbage collection occur;
it demands that garbage collection occur.

Implementation

I decided to implement a mark-sweep garbage collector by
modifying the sequential fit implementation in Chapter 4. My imple-
mentation of the reference counting memory manager required four
files:

Table 5.2

File Use

driver.cpp contains main(), is the scene of the crime

mallocV5.cpp newMalloc(), newFree() wrappers (5th version)

perform.cpp implements the PerformanceTest class

memmgr.cpp implements the MarkSweepMemoryManager class

driver.cpp

This file contains the main() entry point. You can build my imple-
mentation to execute a diagnostic test or a performance test. To
build the diagnostic version, you will need to comment out the
PerformanceTestDriver() invocation and uncomment the
debugTest() invocation. You will also need to activate the
DEBUG_XXX macros in the mallocV4.cpp file.

Automatic Memory Management 307

C
h
a
p
te

r
5

Figure 5.8

#include<mallocV5.cpp>

#include<perform.cpp>

void debugTest()

{

void *ptr;

void *ptr1;

void *ptr2;

unsigned long *lptr;

unsigned long allocs[6]={8,12,33,1,122,50};

printf("address of ptr = %p\n",&ptr);

printf("address of ptr1 = %p\n",&ptr1);

printf("address of ptr2 = %p\n",&ptr2);

printf("address of lptr = %p\n",&lptr);

printf("address of allocs = %p\n",allocs);

initMemMgr(270,4);

//8

ptr = newMalloc(allocs[0]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

//12

ptr = newMalloc(allocs[1]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

ptr2=ptr;

//33

ptr = newMalloc(allocs[2]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

lptr=(unsigned long*)ptr;

*lptr =(unsigned long)ptr;

lptr=NULL;

//1

//first garbage collection here

ptr = newMalloc(allocs[3]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

ptr2=ptr;

//122

ptr = newMalloc(allocs[4]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

ptr1=ptr;

//50, should fail

ptr = newMalloc(allocs[5]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

308 Chapter 5

forceCollection();

closeMemMgr();

return;

}/*end debugTest--*/

void main()

{

//need this for mark-sweep

getTOS();

//for the debug test, should activate debug macros in

mallocVx.cpp

//debugTest();

//for the performance test, should comment out debug macros

PerformanceTestDriver();

return;

}/*end main---*/

You might notice a weird-looking function called getTOS(), which is
invoked in main(). This is the first statement in main(), and it
resolves to a macro defined in memmgr.cpp. This macro, which
stands for get Top Of the Stack, obtains the value of EBP register so
that my code knows where to stop its scan of the stack while look-
ing for pointers. The main() function, like other C functions, has a
prologue that sets up the EBP register as a stack frame pointer.

_main PROC NEAR

push ebp

mov ebp, esp

By saving the value of EBP as soon as main() begins, I ensure that
I can scan as much of the stack as legally possible.

mallocV5.cpp

Because we are now in the domain of automatic memory manage-
ment, I disabled the newFree() function that has traditionally
been defined in this file. The newMalloc() function is still opera-
tional, albeit using a different underlying object. If you wish to
perform a debug/diagnostic test, you will need to activate the
DEBUG_XXX macros.

You also might want to keep in mind that I have included a
forceCollection() wrapper function that allows you to invoke
the garbage collector.

Automatic Memory Management 309

C
h
a
p
te

r
5

#include<stdio.h>

#include<stdlib.h>

#include<windows.h>

//#define DEBUG_MS_MEM_MGR

//#define DEBUG_MALLOCV5

#include<memmgr.cpp>

/*

wrapper functions

*/

MarkSweepMemoryManager *mmptr;

void initMemMgr(unsigned long totalbytes,unsigned char period)

{

mmptr = new MarkSweepMemoryManager(totalbytes,period);

}

void closeMemMgr()

{

delete(mmptr);

}

void *newMalloc(unsigned long size)

{

void *ptr = (*mmptr).allocate(size);

#ifdef DEBUG_MALLOCV5

(*mmptr).printState();

#endif

return(ptr);

}

void forceCollection()

{

(*mmptr).forceCollection();

return;

}

void newFree(void *ptr)

{

printf("newFree(): cannot free %p\n",ptr);

printf("newFree(): not implemented, using garbage

collector\n");

return;

}

310 Chapter 5

perform.cpp

The PerformanceTest class defined in this file has not been
modified very much. The only thing that changed was the imple-
mentation of the runTest() member function. Specifically, I had
to remove the calls to newFree(), which are no longer valid. I also
replaced the array of void*addr[] pointers with a single addr
pointer so that I could overwrite its contents and produce garbage.

unsigned long PerformanceTest::runTest()

{

unsigned long *allocs;

unsigned long i;

unsigned long ticks1,ticks2;

void *addr;

/*create stream of allocation values*/

allocs = (unsigned long *)malloc(sizeof(long)*nAllocations);

if(allocs==NULL)

{

printf("could not allocate malloc() request stream\n");

exit(1);

}

getAllocArray(allocs);

/*start timer and do some work*/

initMemMgr(1024*1024,200);

printf("PerformanceTest::runTest(): time whistle blown\n");

ticks1 = GetTickCount();

for(i=0;i<nAllocations;i++)

{

addr = (char *)newMalloc(allocs[i]);

if(addr==NULL)

{

printf("mallco()=addr[%lu]=%lu failed\n",i,addr);

exit(1);

}

}

forceCollection();

ticks2 = GetTickCount();

Automatic Memory Management 311

C
h
a
p
te

r
5

printf("PerformanceTest::runTest(): race has ended\n");

closeMemMgr();

free(allocs);

return(ticks2-ticks1);

}/*end runTest--*/

memmgr.cpp

The MarkSweepMemoryManager class defined in this file is
basically an extended version of the SequentialFitMemory-
Manager. To give you an idea of how this class operates, I have
enumerated the possible paths of execution for this class in Figure
5.9.

Most of what happens is performed as a result of invoking the
allocate() function. Normally, allocate() will reserve stor-
age and split free blocks. However, if the ticks variable has hit its
period value, the garbage collector will kick into action via the
trace() function.

#ifdef DEBUG_MS_MEM_MGR

#define MSG0(arg); printf(arg);

#define MSG1(arg1,arg2); printf(arg1,arg2);

#else

#define MSG0(arg);

#define MSG1(arg1,arg2);

312 Chapter 5

Figure 5.9

#endif

#define U1 unsigned char

#define U4 unsigned long

/*

list element format

|0 3||4 7|| 8 ||9 12||13 .. n|

[PREV][NEXT][STATE][SIZE][payload]

U4 U4 U1 U4 ?

byte allocated/freed is address of first byte of payload

header = 13 bytes

byte[0] is occupied by header data, so is always used, thus

first link has prev=0 (0 indicates not used)

last link has next=0

*/

#define PREV(i) (*((U4*)(&ram[i-13])))

#define NEXT(i) (*((U4*)(&ram[i-9])))

#define STATE(i) (*((U1*)(&ram[i-5])))

/*FREE,OCCUPIED,TESTING*/

#define SIZE(i) (*((U4*)(&ram[i-4])))

#define FREE 0

#define OCCUPIED 1

#define TESTING 2

char *stateStr[3]={"FREE","OCCUPIED","TESTING"};

#define START 13 /*address of first payload*/

#define SZ_HEADER 13

U4 stackFrameBase;

#define getTOS() _asm{ MOV stackFrameBase, EBP}

class MarkSweepMemoryManager

{

private:

HANDLE handle;

U1 *ram; //pointer to memory storage

U4 size; //nbytes in storage

U1 ticks; //used to trigger collection

U1 period; //# ticks before collect

void split(U4 addr,U4 nbytes);

void trace();

void mark();

void traverseStack();

Automatic Memory Management 313

C
h
a
p
te

r
5

void traverseHeap();

void traverseMemory(U1 *addr,U4 nbytes);

int checkAddress(void *addr);

void sweep();

void release(U4 index);

void merge(U4 prev,U4 current,U4 next);

public:

MarkSweepMemoryManager(U4 nbytes,U1 maxticks);

~MarkSweepMemoryManager();

void*allocate(U4 nbytes);

void forceCollection();

void printState();

};

MarkSweepMemoryManager::MarkSweepMemoryManager(U4 nbytes,U1

maxticks)

{

handle = GetProcessHeap();

if(handle==NULL)

{

printf("MarkSweepMemoryManager::");

printf("MarkSweepMemoryManager():");

printf("invalid handle\n");

exit(1);

}

ram = (U1*)HeapAlloc(handle,HEAP_ZERO_MEMORY,nbytes);

//for portability, you could use:

//ram = (unsigned char*)malloc(nbytes);

size = nbytes;

if(size<=SZ_HEADER)

{

printf("MarkSweepMemoryManager::");

printf("MarkSweepMemoryManager():");

printf("not enough memory fed to constructor\n");

exit(1);

}

PREV(START)=0;

NEXT(START)=0;

STATE(START)=FREE;

SIZE(START)=size-SZ_HEADER;

MSG0("MarkSweepMemoryManager::");

314 Chapter 5

MSG1("MarkSweepMemoryManager(): ram[%lu], ",nbytes);

ticks = 0;

period = maxticks;

MSG1("ticks=%u, ",ticks);

MSG1("period=%u\n",period);

return;

}/*end constructor--*/

MarkSweepMemoryManager::~MarkSweepMemoryManager()

{

if(HeapFree(handle,HEAP_NO_SERIALIZE,ram)==0)

{

printf("MarkSweepMemoryManager::");

printf("~MarkSweepMemoryManager():");

printf("could not free heap storage\n");

return;

}

//for portability, you could use:

//free(ram);

MSG0("MarkSweepMemoryManager::");

MSG0("~MarkSweepMemoryManager()");

MSG1("free ram[%lu]\n",size);

return;

}/*end destructor---*/

/*

U4 nbytes - number of bytes required

returns address of first byte of memory region allocated

(or NULL if cannot allocate a large enough block)

*/

void* MarkSweepMemoryManager::allocate(U4 nbytes)

{

U4 current;

MSG0("MarkSweepMemoryManager::");

MSG1("allocate(%lu)\n",nbytes);

if(nbytes==0)

{

MSG0("MarkSweepMemoryManager::");

MSG0("allocate(): zero bytes requested\n");

return(NULL);

}

Automatic Memory Management 315

C
h
a
p
te

r
5

//before we start, garbage collect if the time has arrived

ticks++;

MSG0("MarkSweepMemoryManager::");

MSG1("allocate(): gc check -> [ticks,period]=[%u,",ticks);

MSG1("%u]\n",period);

if(ticks==period)

{

trace();

ticks=0;

}

//traverse the linked list, starting with first element

current = START;

while(NEXT(current)!=0)

{

if((SIZE(current)>=nbytes)&&(STATE(current)==FREE))

{

split(current,nbytes);

return((void*)&ram[current]);

}

current = NEXT(current);

}

//handle the last block (which has NEXT(current)=0)

if((SIZE(current)>=nbytes)&&(STATE(current)==FREE))

{

split(current,nbytes);

return((void*)&ram[current]);

}

return(NULL);

}/*end allocation---*/

/*

breaks [free] region into [alloc][free] pair, if possible

*/

void MarkSweepMemoryManager::split(U4 addr, U4 nbytes)

{

/*

want payload to have enough room for

nbytes = size of request

SZ_HEADER = header for new region

SZ_HEADER = payload for new region (arbitrary 13 bytes)

*/

316 Chapter 5

if(SIZE(addr)>= nbytes+SZ_HEADER+SZ_HEADER)

{

U4 oldnext;

U4 oldprev;

U4 oldsize;

U4 newaddr;

MSG0("MarkSweepMemoryManager::");

MSG0("split(): split=YES\n");

oldnext=NEXT(addr);

oldprev=PREV(addr);

oldsize=SIZE(addr);

newaddr = addr + nbytes + SZ_HEADER;

NEXT(addr)=newaddr;

PREV(addr)=oldprev;

STATE(addr)=OCCUPIED;

SIZE(addr)=nbytes;

NEXT(newaddr)=oldnext;

PREV(newaddr)=addr;

STATE(newaddr)=FREE;

SIZE(newaddr)=oldsize-nbytes-SZ_HEADER;

}

else

{

MSG0("MarkSweepMemoryManager::");

MSG0("split(): split=NO\n");

STATE(addr)=OCCUPIED;

}

return;

}/*end split--*/

void MarkSweepMemoryManager::forceCollection()

{

MSG0("MarkSweepMemoryManager::");

MSG0("forceCollection(): forcing collection\n");

trace();

return;

}/*end forceCollection--*/

void MarkSweepMemoryManager::trace()

{

MSG0("MarkSweepMemoryManager::");

MSG0("trace(): initiating mark-sweep\n");

mark();

Automatic Memory Management 317

C
h
a
p
te

r
5

sweep();

return;

}/*end trace--*/

void MarkSweepMemoryManager::mark()

{

U4 i;

U4 current;

//set all OCCUPIED blocks to TESTING

i=0;

current=START;

while(NEXT(current)!=0)

{

if(STATE(current)==OCCUPIED)

{

STATE(current)=TESTING;

}

current = NEXT(current);

i++;

}

if(STATE(current)==OCCUPIED)

{

STATE(current)=TESTING;

}

#ifdef DEBUG_MS_MEM_MGR

MSG0("MarkSweepMemoryManager::");

MSG0("mark(): toggle OCCUPIED to TESTING\n");

printState();

#endif

//traverse the stack and heap

//if find address to TESTING block, set to OCCUPIED

MSG0("MarkSweepMemoryManager::");

MSG0("mark(): initiating stack and heap traversals\n");

traverseStack();

traverseHeap();

return;

}/*end mark---*/

void MarkSweepMemoryManager::traverseStack()

{

U4 currentAddr;

318 Chapter 5

_asm{ MOV currentAddr,ESP };

MSG0("MarkSweepMemoryManager::traverseStack():");

MSG1("EBP=%p\t",stackFrameBase);

MSG1("ESP=%p\n",currentAddr);

//basically traverse stack from current pointer to base

(Lo->Hi)

traverseMemory((U1*)currentAddr,(stackFrameBase-currentAddr));

return;

}/*end traverseStack--*/

void MarkSweepMemoryManager::traverseHeap()

{

MSG0("MarkSweepMemoryManager::traverseHeap(): looking at

heap\n");

traverseMemory(ram,size);

return;

}/*end traverseHeap---*/

void MarkSweepMemoryManager::traverseMemory(U1 *addr,U4 nbytes)

{

U4 i;

U4 start,end;

U4 *iptr;

start = (U4)addr;

end = start + nbytes -1;

MSG0("MarkSweepMemoryManager::traverseMemory(): ");

MSG1("[start=%lx,",start);

MSG1(" end=%lx]\n",end);

//address = 4 bytes, so stop 4 bytes from end

for(i=start;i<=end-3;i++)

{

//point to integer value at memory address i

iptr = (U4*)i;

//check integer value to see if it is a heap address

if(checkAddress((void *)(*iptr))==TRUE)

{

MSG0("MarkSweepMemoryManager::traverseMemory(): ");

MSG1("value source address=%p\n",iptr);

}

}

Automatic Memory Management 319

C
h
a
p
te

r
5

return;

}/*end traverseMemory---*/

int MarkSweepMemoryManager::checkAddress(void *addr)

{

U4 index;

if(addr==NULL){ return(FALSE); }

//check to see if address is out of heap bounds

if((addr>= (void*)&ram[size]) || (addr< (void*)&ram[0]))

{

return(FALSE);

}

//translate addr into index

index = (U4)(((U1*)addr) - &ram[0]);

//now check index to see if reference an actual block

//a header always occupies first SZ_HEADER bytes of storage

if(index<SZ_HEADER){ return(FALSE); }

//more sanity checks

if((STATE(index)!=TESTING)|| //region if free

(PREV(index)>=index) || //previous element not previous

(NEXT(index)>=size) || //next is beyond the end

(SIZE(index)>=size) || //size of region greater

//than whole

(SIZE(index)==0)) //no size at all

{

MSG0("MarkSweepMemoryManager::checkAddress(): ");

MSG1("failed sanity chk (already found) addr=%p ",addr);

return(FALSE);

}

MSG0("MarkSweepMemoryManager::checkAddress(): ");

MSG1("live memory block at addr=%p ",addr);

MSG1("index=%lu\n",index);

STATE(index)=OCCUPIED;

return(TRUE);

}/*end checkAddress---*/

320 Chapter 5

void MarkSweepMemoryManager::sweep()

{

U4 i;

U4 current;

MSG0("MarkSweepMemoryManager::");

MSG0("sweep(): link sweep intiated\n");

//recycle all the TESTING blocks

i=0;

current=START;

while(NEXT(current)!=0)

{

if(STATE(current)==TESTING)

{

MSG0("MarkSweepMemoryManager::");

MSG1("sweep(): garbage found at index=%lu\n",

current);

release(current);

}

current = NEXT(current);

i++;

}

if(STATE(current)==TESTING)

{

MSG0("MarkSweepMemoryManager::");

MSG1("sweep(): garbage found at index=%lu\n",current);

release(current);

}

return;

}/*end sweep--*/

void MarkSweepMemoryManager::release(U4 index)

{

//a header always occupies first 13 bytes of storage

if(index<SZ_HEADER)

{

MSG0("MarkSweepMemoryManager::");

MSG0("release(): address in first 13 bytes\n");

return;

}

//yet more sanity checks

Automatic Memory Management 321

C
h
a
p
te

r
5

if((STATE(index)==FREE) || //region if free

(PREV(index)>=index) || //previous element not previous

(NEXT(index)>=size) || //next is beyond the end

(SIZE(index)>=size) || //size region greater than whole

(SIZE(index)==0)) //no size at all

{

MSG0("MarkSweepMemoryManager::");

MSG0("release(): referencing invalid region\n");

return;

}

merge(PREV(index),index,NEXT(index));

#ifdef DEBUG_MS_MEM_MGR

MSG0("MarkSweepMemoryManager::");

MSG0("release(): post merge layout\n");

printState();

#endif

return;

}/*end release--*/

void MarkSweepMemoryManager::merge(U4 prev,U4 current,U4 next)

{

/*

first handle special cases of region at end(s)

prev=0 low end

next=0 high end

prev=0 and next=0 only 1 list element

*/

if(prev==0)

{

if(next==0)

{

STATE(current)=FREE;

}

else if((STATE(next)==OCCUPIED)||(STATE(next)==TESTING))

{

STATE(current)=FREE;

}

else if(STATE(next)==FREE)

{

U4 temp;

MSG0("MarkSweepMemoryManager::merge():");

MSG0("merging to NEXT\n");

STATE(current)=FREE;

322 Chapter 5

SIZE(current)=SIZE(current)+SIZE(next)+SZ_HEADER;

NEXT(current)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=current; }

}

}

else if(next==0)

{

if((STATE(prev)==OCCUPIED)||(STATE(prev)==TESTING))

{

STATE(current)=FREE;

}

else if(STATE(prev)==FREE)

{

MSG0("MarkSweepMemoryManager::merge():");

MSG0("merging to PREV\n");

SIZE(prev)=SIZE(prev)+SIZE(current)+SZ_HEADER;

NEXT(prev)=NEXT(current);

}

}

/*

cases:

OTO -> OFO

TTT TFT

TTO TFO

OTT OFT

OTF O[F]

TTF T[F]

FTO [F]O

FTT [F]T

FTF [F]

*/

else if((STATE(prev)==OCCUPIED)&&(STATE(next)==OCCUPIED))

{

STATE(current)=FREE;

}

else if((STATE(prev)==TESTING)&&(STATE(next)==TESTING))

{

STATE(current)=FREE;

}

else if((STATE(prev)==TESTING)&&(STATE(next)==OCCUPIED))

{

STATE(current)=FREE;

}

else if((STATE(prev)==OCCUPIED)&&(STATE(next)==TESTING))

{

STATE(current)=FREE;

Automatic Memory Management 323

C
h
a
p
te

r
5

}

else if((STATE(prev)==OCCUPIED)&&(STATE(next)==FREE))

{

U4 temp;

MSG0("MarkSweepMemoryManager::merge():");

MSG0("merging to NEXT\n");

STATE(current)=FREE;

SIZE(current)=SIZE(current)+SIZE(next)+SZ_HEADER;

NEXT(current)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=current; }

}

else if((STATE(prev)==TESTING)&&(STATE(next)==FREE))

{

U4 temp;

MSG0("MarkSweepMemoryManager::merge():");

MSG0("merging to NEXT\n");

STATE(current)=FREE;

SIZE(current)=SIZE(current)+SIZE(next)+SZ_HEADER;

NEXT(current)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=current; }

}

else if((STATE(prev)==FREE)&&(STATE(next)==OCCUPIED))

{

MSG0("MarkSweepMemoryManager::merge():");

MSG0("merging to PREV\n");

SIZE(prev)=SIZE(prev)+SIZE(current)+SZ_HEADER;

NEXT(prev)=NEXT(current);

PREV(next)=prev;

}

else if((STATE(prev)==FREE)&&(STATE(next)==TESTING))

{

MSG0("MarkSweepMemoryManager::merge():");

MSG0("merging to PREV\n");

SIZE(prev)=SIZE(prev)+SIZE(current)+SZ_HEADER;

NEXT(prev)=NEXT(current);

PREV(next)=prev;

}

else if((STATE(prev)==FREE)&&(STATE(next)==FREE))

{

U4 temp;

MSG0("MarkSweepMemoryManager::merge():");

MSG0("merging with both sides\n");

SIZE(prev)=SIZE(prev)+

324 Chapter 5

SIZE(current)+SZ_HEADER+

SIZE(next)+SZ_HEADER;

NEXT(prev)=NEXT(next);

temp = NEXT(next);

if(temp!=0){ PREV(temp)=prev; }

}

return;

}/*end merge--*/

void MarkSweepMemoryManager::printState()

{

U4 i;

U4 current;

i=0;

current=START;

while(NEXT(current)!=0)

{

printf("%lu) [P=%lu]",i,PREV(current));

printf("[addr=%lu]",current);

printf("[St=%s]",stateStr[STATE(current)]);

printf("[Sz=%lu]",SIZE(current));

printf("[N=%lu]\n",NEXT(current));

current = NEXT(current);

i++;

}

//print the last list element

printf("%lu) [P=%lu]",i,PREV(current));

printf("[addr=%lu]",current);

printf("[St=%s]",stateStr[STATE(current)]);

printf("[Sz=%lu]",SIZE(current));

printf("[N=%lu]\n",NEXT(current));

return;

}/*end printState---*/

Tests

I performed two different tests against this memory manager. A
debug test was performed to make sure that the manager was doing
what it was supposed to do. If you modify my source code, I would
suggest running the debug test again to validate your changes. Once

Automatic Memory Management 325

C
h
a
p
te

r
5

I was sure that the memory manager was operational, I turned off
debugging features and ran a performance test.

The debug test was performed by executing the code in the
debugTest() function defined in the driver.cpp source file. I
keep things fairly simple, but at the same time, I take a good, hard
look at what is going on. If you decide to run a debug test, you will
want to make sure that the DEBUG_XXX macros in
mallocV4.cpp are turned on. You will also want to comment out
the PerformanceTestDriver() function call in main().

The following output was generated by the debug build of the
memory manager:

address of ptr = 0065FDE0

address of ptr1 = 0065FDC0

address of ptr2 = 0065FDBC

address of lptr = 0065FDC4

address of allocs = 0065FDC8

MarkSweepMemoryManager::MarkSweepMemoryManager(): ram[270],

ticks=0, period=4

MarkSweepMemoryManager::allocate(8)

MarkSweepMemoryManager::allocate(): gc check ->

[ticks,period]=[1,4]

MarkSweepMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=FREE][Sz=236][N=0]

MarkSweepMemoryManager::allocate(12)

MarkSweepMemoryManager::allocate(): gc check ->

[ticks,period]=[2,4]

MarkSweepMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=FREE][Sz=211][N=0]

MarkSweepMemoryManager::allocate(33)

MarkSweepMemoryManager::allocate(): gc check ->

[ticks,period]=[3,4]

MarkSweepMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=FREE][Sz=165][N=0]

MarkSweepMemoryManager::allocate(1)

MarkSweepMemoryManager::allocate(): gc check ->

[ticks,period]=[4,4]

MarkSweepMemoryManager::trace(): initiating mark-sweep

MarkSweepMemoryManager::mark(): toggle OCCUPIED to TESTING

0) [P=0][addr=13][St=TESTING][Sz=8][N=34]

1) [P=13][addr=34][St=TESTING][Sz=12][N=59]

2) [P=34][addr=59][St=TESTING][Sz=33][N=105]

3) [P=59][addr=105][St=FREE][Sz=165][N=0]

326 Chapter 5

MarkSweepMemoryManager::mark(): initiating stack and heap

traversals

MarkSweepMemoryManager::traverseStack():EBP=0065FDF8

ESP=0065FD5C

MarkSweepMemoryManager::traverseMemory(): [start=65fd5c,

end=65fdf7]

MarkSweepMemoryManager::checkAddress(): live memory block at

addr=00530047 index=59

MarkSweepMemoryManager::traverseMemory(): value source

address=0065FDAC

MarkSweepMemoryManager::checkAddress(): live memory block at

addr=0053002E index=34

MarkSweepMemoryManager::traverseMemory(): value source

address=0065FDBC

MarkSweepMemoryManager::checkAddress(): failed sanity chk

(already found) addr=00530047

MarkSweepMemoryManager::traverseHeap(): looking at heap

MarkSweepMemoryManager::traverseMemory(): [start=53000c,

end=530119]

MarkSweepMemoryManager::checkAddress(): failed sanity chk

(already found) addr=00530047 MarkSweepMemoryManager::sweep():

link sweep intiated

MarkSweepMemoryManager::sweep(): garbage found at index=13

MarkSweepMemoryManager::release(): post merge layout

0) [P=0][addr=13][St=FREE][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=FREE][Sz=165][N=0]

MarkSweepMemoryManager::split(): split=NO

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=FREE][Sz=165][N=0]

MarkSweepMemoryManager::allocate(122)

MarkSweepMemoryManager::allocate(): gc check ->

[ticks,period]=[1,4]

MarkSweepMemoryManager::split(): split=YES

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=OCCUPIED][Sz=122][N=240]

4) [P=105][addr=240][St=FREE][Sz=30][N=0]

MarkSweepMemoryManager::allocate(50)

MarkSweepMemoryManager::allocate(): gc check ->

[ticks,period]=[2,4]

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=OCCUPIED][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=OCCUPIED][Sz=122][N=240]

4) [P=105][addr=240][St=FREE][Sz=30][N=0]

ptr==NULL!

Automatic Memory Management 327

C
h
a
p
te

r
5

MarkSweepMemoryManager::forceCollection(): forcing collection

MarkSweepMemoryManager::trace(): initiating mark-sweep

MarkSweepMemoryManager::mark(): toggle OCCUPIED to TESTING

0) [P=0][addr=13][St=TESTING][Sz=8][N=34]

1) [P=13][addr=34][St=TESTING][Sz=12][N=59]

2) [P=34][addr=59][St=TESTING][Sz=33][N=105]

3) [P=59][addr=105][St=TESTING][Sz=122][N=240]

4) [P=105][addr=240][St=FREE][Sz=30][N=0]

MarkSweepMemoryManager::mark(): initiating stack and heap

traversals

MarkSweepMemoryManager::traverseStack():EBP=0065FDF8

ESP=0065FD6C

MarkSweepMemoryManager::traverseMemory(): [start=65fd6c,

end=65fdf7]

MarkSweepMemoryManager::checkAddress(): live memory block at

addr=00530019 index=13

MarkSweepMemoryManager::traverseMemory(): value source

address=0065FDBC

MarkSweepMemoryManager::checkAddress(): live memory block at

addr=00530075 index=105

MarkSweepMemoryManager::traverseMemory(): value source

address=0065FDC0

MarkSweepMemoryManager::traverseHeap(): looking at heap

MarkSweepMemoryManager::traverseMemory(): [start=53000c,

end=530119]

MarkSweepMemoryManager::checkAddress(): live memory block at

addr=00530047 index=59

MarkSweepMemoryManager::traverseMemory(): value source

address=00530047

MarkSweepMemoryManager::sweep(): link sweep intiated

MarkSweepMemoryManager::sweep(): garbage found at index=34

MarkSweepMemoryManager::release(): post merge layout

0) [P=0][addr=13][St=OCCUPIED][Sz=8][N=34]

1) [P=13][addr=34][St=FREE][Sz=12][N=59]

2) [P=34][addr=59][St=OCCUPIED][Sz=33][N=105]

3) [P=59][addr=105][St=OCCUPIED][Sz=122][N=240]

4) [P=105][addr=240][St=FREE][Sz=30][N=0]

MarkSweepMemoryManager::~MarkSweepMemoryManager()free ram[270]

The debug test code is a little involved, so I am going to provide a
blow-by-blow account of what happens. Let’s start by looking at a
snippet of code from debugTest():

//8

ptr = newMalloc(allocs[0]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

//12

ptr = newMalloc(allocs[1]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

ptr2=ptr;

328 Chapter 5

//33

ptr = newMalloc(allocs[2]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

lptr=(unsigned long*)ptr;

*lptr =(unsigned long)ptr;

lptr=NULL;

//1

//first garbage collection here

ptr = newMalloc(allocs[3]); if(ptr==NULL){ printf

("ptr==NULL!\n"); }

ptr2=ptr;

By the time the newMalloc(allocs[3]) call has been made,
the local variables of debugTest() have the following values:

Table 5.3

Variable ram[] index Size of Block Referenced

ptr 59 33

ptr1 - -

ptr2 34 12

lptr NULL -

heap variable 59 33

The ptr variable has overwritten itself several times and will point
to the most recent heap allocation. In addition, a variable in the
heap, initially pointed to by lptr, stores an address belonging to
the heap.

When the newMalloc(allocs[3]) code has been reached,
the ticks variable will be equal to 4, and garbage collection will
occur. This will cause the 8-byte block that was allocated first to be
reclaimed. All the other allocated heap blocks still have “live”
pointers.

Once garbage collection has occurred, the following code will
execute:

//122

ptr = newMalloc(allocs[4]);

if(ptr==NULL){ printf("ptr==NULL!\n"); }

ptr1=ptr;

//50, should fail

ptr = newMalloc(allocs[5]);

if(ptr==NULL){ printf("ptr==NULL!\n"); }

forceCollection();

Automatic Memory Management 329

C
h
a
p
te

r
5

This will cause the local variables of debugTest() to assume the
following values:

Table 5.4

Variable ram[] index Size of Block Referenced

ptr NULL -

ptr1 105 122

ptr2 13 8

lptr NULL -

heap variable 59 33

The last allocation call cannot be serviced, so NULL is returned into
ptr. This leaves us with three “live” pointers. If you look at the
debug output, you will see that there are three OCCUPIED regions
of memory in the heap after garbage collection occurs.

The performance test was conducted by commenting out
debugTest() and the debug macros in mallocV5.cpp, and
then enabling the PerformanceTestDriver() function. The
results of the performance run were initially disappointing:

PerformanceTest::runTest(): time whistle blown

PerformanceTest::runTest(): race has ended

msecs=9615

Whoa. After changing the value of period from 4 to 200, the per-
formance was more acceptable:

PerformanceTest::runTest(): time whistle blown

PerformanceTest::runTest(): race has ended

msecs=430

This is a far cry from the 35 milliseconds that was necessary for the
sequential fit implementation to do its job. As I mentioned earlier,
extra bookkeeping is the cost of automatic memory management,
and this translates into additional execution time.

Trade-Offs

While my mark-sweep collector does not exactly compete with the
reference counting version, it does successfully handle the
cyclic-reference problem that caused a memory leak in the previous
implementation. With a little refinement, I could probably whittle
down the performance time to less than 100 milliseconds. I will
present some suggestions for improvement at the end of this
chapter.

330 Chapter 5

Besides performance, two additional problems are created
through use of the mark-sweep collector: latency and external frag-
mentation. Not only does my implementation lead to scattered
groups of free and reserved blocks, but it would be possible for two
related blocks of memory to be located at opposite ends of the heap.

The copying garbage collector is a variation of the mark-sweep col-
lector that attempts to deal with these two problems. The copying
garbage collector copies “live” memory blocks to the low end of
memory so that all the allocated storage ends up concentrated in
one region of the heap, leaving the rest of the heap to service alloca-
tion requests. Not only does this solve the latency problem, but it
also allows memory requests for larger blocks to be serviced. This
is illustrated in Figure 5.10.

Because all the “live” pointers on the stack, in the heap, and in the
data segment need to be updated with new values when the mem-
ory blocks that they point to are relocated, copying collection can be
difficult. Not only does this add complexity, but these extra steps
also hurt execution time. In addition, extra storage space is needed
in order to copy allocated blocks of memory on the heap from one
location to another. Depending on the size of the memory block
being moved, this can be a significant amount of storage (perhaps
even the amount of heap space initially allocated to the garbage
collector).

Automatic Memory Management 331

C
h
a
p
te

r
5

Figure 5.10

Performance Comparison

At this point, it might be enlightening to gather all of the statistics
from the past two chapters together:

Table 5.5

Algorithm Time to Service 1,024 Requests

bit map 856 milliseconds

sequential fit 35 milliseconds

segregated lists 5 milliseconds

reference counting 30 milliseconds

mark-sweep 430 milliseconds

Hands down, the segregated list approach is the quickest. It also
wastes memory like nobody’s business. It would be very easy (with
the segregated list approach) to end up reserving 1,024 bytes for an
8-byte allocation request. This leaves the sequential fit algorithm as
the most attractive implementation with regard to the manual mem-
ory managers presented in Chapter 2.

While the reference counting approach is actually faster than two
of the manual memory managers, it also has the nasty habit of
developing memory leaks when confronted with cyclic pointer ref-
erences. The whole point of using a garbage collector is to avoid
memory leaks, so this problem kicks reference counting out of the
race. This leaves us with the mark-sweep garbage collector, which
has obvious performance issues.

I will spend the remainder of this book suggesting various ways
to augment the mark-sweep collector’s execution time and function-
ality. I will leave it as an exercise to the reader to augment the
mark-sweep collector with these additional features.

Potential Additions

The mark-sweep garbage collector that I provided in this chapter
was a bare-bones implementation (and that is an understatement). I
deliberately kept things as simple as I could so that you could grasp
the big picture without being bogged down with details. Seeing as
how my mark-sweep collector had only the minimum set of fea-
tures, I thought it might be wise to point out a few of the features
that could be added to round out the functionality of the mark-sweep
collector.

332 Chapter 5

Object Format Assumptions

So far, I have referred to regions in the heap as “memory blocks.” I
have done this intentionally so that I could keep the discussion as
general as possible. In the end, everything on the heap is merely a
block of memory. Depending on what that block of memory repre-
sents, however, it may require additional steps when the block of
memory is allocated and reclaimed.

For example, objects have both constructors and destructors.
When an object is created, its constructor must be called. When an
object’s storage is reclaimed, its destructor needs to be invoked.

When an object is created off the heap, the compiler will typically
pass the object to its constructor. Consider this code:

BluePrint *ptr;

ptr = new BluePrint(15);

In addition to requesting storage from the heap via the new opera-
tor, most compilers will also emit the code necessary to pass the
new object to its constructor:

; invoke the new operator, allocate 12 bytes

push 12 ; 0000000cH

call ??2@YAPAXI@Z ; operator new

add esp, 4

; pass allocated memory (the object) to the constructor

push 15 ; 0000000fH

mov ecx, DWORD PTR $T196[ebp]

call ??0BluePrint@@QAE@H@Z ; BluePrint::BluePrint

mov DWORD PTR -36+[ebp], eax

If manual memory management is being used, the programmer will
include source code that will take care of reclaiming the object’s
storage in the heap.

delete(ptr);

As before, not only will the compiler emit the instructions neces-
sary to reclaim the object, but it will also emit the instructions
necessary to call the object’s destructor before reclamation occurs:

push 1

mov ecx, DWORD PTR $T200[ebp]

call ??_GBluePrint@@QAEPAXI@Z ; BluePrint::'scalar

deleting destructor'

mov DWORD PTR -40+[ebp], eax

If a garbage collector is being used to manage reclamation, the pro-
grammer will never issue a call to delete(). This means that the
garbage collector will have to do this behind the scenes. In order to
obey this protocol, a memory manager will need to know which

Automatic Memory Management 333

C
h
a
p
te

r
5

blocks are objects. If a given memory block represents an object,
the memory manager will also need to know what type of object it is
dealing with.

To institute this type of functionality with my mark-sweep collec-
tor, you might want to consider adding another field to the memory
block header (see Figure 5.11).

This new field, which we’ll call TYPE, indicates if the memory block
is an object, and if it is, then it indexes an element in an array of
function pointers. These function pointers store the addresses of
destructor functions. This setup is displayed in Figure 5.12.

When a memory block is about to be reclaimed, the garbage collec-
tor will check to see if the memory block represents an object. If

334 Chapter 5

Figure 5.11

Figure 5.12

the memory block is an object, the collector will invoke the object’s
destructor before it reclaims the memory block’s storage.

Naturally, there are many more details to consider than I’ve men-
tioned, such as setting up the table of function pointers and handling
nested objects that call different destructors. You will have to exper-
iment with a number of different approaches. Nevertheless, I hope
to have guided you in the right direction.

Variable Heap Size

In all of my implementations, the amount of storage space that the
memory manager has to work with is fixed in size. This means that
if the manager runs out of memory, it will not be able to service
additional requests. To provide greater flexibility, you could allow a
memory manager to request more memory from the underlying
operating system. This way, when a manager runs out of storage, it
simply expands its space by calling the operating system for help.

There are problems related to doing this. For example, if you use
an ANSI function, like realloc(), to increase the memory man-
ager’s storage space, you cannot be sure if the resized memory
region will be relocated. Relocation basically invalidates all of an
application’s existing pointers because the memory regions that
they referenced have been moved.

Microsoft’s HeapReAlloc() Win32 call allows you to specify a
special flag value:

newptr = HeapReAlloc(heapHandle,

HEAP_REALLOC_IN_PLACE_ONLY,

oldptr,

1024*1024*10);

This requires that the reallocated memory not be moved.

Indirect Addressing

During the discussion of copying collection and memory realloca-
tion, you have seen how moving memory can make life difficult for
an application. The only solution that seems halfway tractable is to
traverse the application’s stack, heap, and data segment and update
the pointer values to reference new locations.

There is, however, a different approach. Rather than have point-
ers reference actual memory, you can have them store handles. A
handle could be implemented simply by a structure that maps an
integer handle value to a physical address:

Automatic Memory Management 335

C
h
a
p
te

r
5

struct MemHandle

{

unsigned long value;

void *ptr;

};

This would allow you to change the address of a memory block (i.e.,
void *ptr) without having to change the value stored by pointers
in the application (i.e., unsigned long value). When an
address change does occur, all you need to update is a single
MemHandle structure instead of potentially dozens of application
variables. This type of relationship is displayed in Figure 5.13.

For example, consider the following code:

void *ptr1;

ptr1 = newMalloc(20); //assume returns handle value=55

printf("%lu\n",ptr); //prints out 55

forceCollection(); //memory blocks may shift

printf("%lu\n",ptr); //still prints out 55

When I initially call newmalloc(), the value stored in ptr1 is a
handle value instead of an actual address. When I call force-
Collection() to initiate garbage collection, memory blocks in
the heap may end up being rearranged. However, the handle value
will not change, even if its associated address does.

Some garbage collectors use handles in conjunction with a stack
allocation scheme. Memory is allocated in a fashion similar to a
stack. There is a pointer (SP) that keeps track of the top of the
stack. Allocation requests cause the stack pointer to increment.
This is a very fast scheme in practice (even faster than the segre-
gated list approach).

336 Chapter 5

Figure 5.13

When the stack hits its limit, the garbage collector kicks in and
reclaims garbage. To minimize fragmentation, the occupied blocks
are all shifted down to the bottom of the heap. Because handles are
being used instead of actual pointers, all the collector has to do
when it makes this shift is update all the handles. The application
variables can remain untouched.

This process is illustrated in Figure 5.14.

Real-Time Behavior

With my mark-sweep collector, there was a noticeable decrease in
execution time when the frequency of garbage collection was
decreased. This might lead you to think that the best way to speed
up a garbage collector is to delay collection until the last possible
moment. As it turns out, this approach isn’t a good idea because it
can force a garbage collector to perform reclamation when the appli-
cation urgently needs allocation the most. A memory-starved
application can be forced to wait for storage space, which it desper-
ately needs, while the garbage collector chugs away.

At the other end of the spectrum, there is the idea that you could
speed a garbage collector up by allowing it to do a small amount of
work during each allocation. This tactic is known as incremental gar-

bage collection, and you got a taste of it when you observed the
reference counting collector.

Automatic Memory Management 337

C
h
a
p
te

r
5

Figure 5.14

Incremental garbage collection works very nicely in practice
because the constant heap maintenance that an incremental man-
ager performs provides enough breathing room for requests to be
satisfied in real time.

I like to think of garbage collection as the inspection of a Marine
Corps barracks at Parris Island. If you wait until the last minute to
clean things up, break out some jelly because you are toast. The
drill instructor is going to come storming in and read you the riot
act for all of the details that you couldn’t possibly have attended to
in the 30 minutes you had to get your bunk in order. On the other
hand, if you constantly keep your area neat and clean, it will be
much easier to deal with the drill instructor when he arrives.

Garbage collection is the same way. Demanding allocations tend
to occur when the memory manager can least afford to service
them. It is Murphy’s Law, plain and simple. By keeping the heap rel-
atively organized at all times, those expensive allocation requests
will not hurt as much. It will also allow the memory manager to
guarantee service pauses within a certain time range.

Life Span Characteristics

Most applications have a set of objects that exist for the life span of
an application and another set of temporal objects that blink in and
out of existence. It makes sense, then, to have different storage
areas and algorithms to deal with memory blocks that have different
life spans. This tactic is known as generational garbage collection.

A generational memory manager breaks the heap into regions
based on life span, known as generations (see Figure 5.15). The
memory manager begins by allocating memory from the youngest
generation.

When the youngest generation is exhausted, the memory man-
ager will initiate garbage collection. Those memory blocks that
survive collection over the course of several iterations will be
moved to the next older generation. As this process continues, the
memory blocks that survive will be filtered up to the older genera-
tions. Each time a generation’s storage space is exhausted, the
memory manager will garbage collect that generation and all the
younger generations.

Most of the garbage collection and allocation activity ends up
occurring in the younger storage areas of the heap. This leaves the
older memory blocks in relative tranquility. It’s like a college phys-
ics department: The young guys do all the work, and the old guys
hang out and polish their awards.

338 Chapter 5

This means that because activity in the older generations is lim-
ited, slower algorithms that waste less memory can be used to track
memory blocks in the older generations. On the other hand, speed
should be the determining factor when choosing an algorithm to
allocate and track memory in the younger generations.

Multithreaded Support

All the implementations presented in this book have been single-
threaded; this was a conscious decision on my part in order to keep
things simple so that you could focus on the main ideas. The handi-
cap of using a single-threaded garbage collection scheme is that
reclamation is done on the critical path of execution.

I think that most garbage collection implementations assume a
multithreaded environment where there will be plenty of CPU
cycles off the critical path. This allows the garbage collector to sup-
posedly do its thing as a background thread while the rest of the
program chugs merrily along. If you are interested in building a
commercial-quality garbage collector, I would recommend that you
consider a multithreaded approach.

There are two sides to every coin; such is the case with using
threads. The first sacrifice you will typically make is portability.
Every vendor seems to supply their own specially tweaked version,
and you can expect to dedicate a significant portion of your develop-
ment time porting your code to work on different operating
systems.

Automatic Memory Management 339

C
h
a
p
te

r
5

Figure 5.15

Another pitfall of using threads is that it does not necessarily
guarantee high performance. For example, let us assume you have a
thread-enabled operating system that can perform thread switches
at the kernel level so that each process table entry has fields to sup-
port one or more threads. Let us also assume that there are 100
processes running, and each process has five active threads (see
Figure 5.16).

This places us in a situation where there are 500 distinct executing
threads. Now imagine an operating system, which is not thread-
enabled, that just has 100 running processes. On the thread-enabled
operating system, a thread will have to potentially wait in line
behind 499 other threads before it gets its chance to execute. On
the thread-disabled machine, a process only has to share the proces-
sor with 99 other tasks, and each execution path will get a larger
share of the processor’s attention.

Is the thread-enabled system necessarily faster, or does it just
give a programmer the ability to load down the operating system so
that each thread actually gets less processor time?

NOTE I will admit that this is a somewhat stilted scenario. A fair
comparison would be to compare an operating system scheduling 500
threads against an operating system scheduling 500 single-threaded
tasks. In this scenario, the thread-enabled operating system would
offer better performance.

My point is not that multithreading hurts performance. In fact,
using threads can usually boost performance due to the lower rela-
tive overhead of the associated context switch. My point is that
multithreading does not guarantee high performance (ha ha —
always read the fine print). In a production environment, actual

340 Chapter 5

Figure 5.16

performance often has more to do with the hardware that an applica-
tion is deployed on and the current load of tasks that the kernel is
servicing than the architecture of a particular application. Perfor-
mance has many independent variables, and an application’s thread
model is just one of those variables.

Automatic Memory Management 341

C
h
a
p
te

r
5

Chapter 6

Miscellaneous Topics

Suballocators

Normally, memory managers have to suffer through the slings and
arrows of not knowing when or how much memory will be
requested by an application. There are, however, some circum-
stances where you will know in advance how large an application’s
memory requests will be or how many there will be. If this is the
case, you can construct a dedicated memory manager known as a
suballocator to handle memory requests and reap tremendous per-
formance gains.

A suballocator is an allocator that is built on top of another alloca-
tor. An example of where suballocators could be utilized is in a
compiler. Specifically, one of the primary duties of a compiler is to
build a symbol table. Symbol tables are memory-resident databases
that serve as a repository for application data. They are typically
built using a set of fixed-size structures. The fact that a symbol
table’s components are all fixed in size makes a compiler fertile
ground for the inclusion of a suballocator. Instead of calling
malloc() to allocate symbol table objects, you can allocate a large
pool of memory and use a suballocator to allocate symbol table
objects from that pool.

NOTE In a sense, all of the memory management implementations
in this book are suballocators because they are built on top of the
Window’s HeapAlloc() function. Traditionally, however, when some-
one is talking about a suballocator, they are talking about a special-
purpose application component that is implemented by the program-
mer and based on existing services provided by application libraries
(like malloc() and free()).

343

To give you an example of how well suballocators function, I am
going to offer a brief example. The following SubAllocator class
manages a number of fixed-sized Indices structures in a list for-
mat. Each structure has a field called FREE to indicate if it has been
allocated. When a request for a structure is made via the allo-
cate() member function, the SubAllocator class will look for
the first free structure in its list and return the address of that
structure. To avoid having to traverse the entire list each time a
request is made, a place marker named lastAlloc is used to keep
track of where the last allocation was performed.

The basic mechanism involved in allocating an Indices struc-
ture is displayed in Figure 6.1.

The following source code implements the SubAllocator class
and a small test driver:

#include<windows.h>

#include<stdlib.h>

#include<stdio.h>

#define U4 unsigned long

#define U1 unsigned char

struct Indices

{

U1 free;

U4 index1;

U4 index2;

U4 index3;

};

344 Chapter 6

Figure 6.1

class SubAllocator

{

private:

struct Indices *indices;

U4 size;

U4 lastAlloc;

public:

SubAllocator(U4 nElms);

~SubAllocator();

struct Indices *alloc();

void release(struct Indices *addr);

void printList();

};

SubAllocator::SubAllocator(U4 nElms)

{

U4 i;

size = nElms;

indices = (struct Indices*)malloc(size*(sizeof(struct

Indices)));

if(indices==NULL)

{

printf("SubAllocator::SubAllocator(%lu):",size);

printf("could not allocate list\n");

exit(1);

}

for(i=0;i<size;i++)

{

indices[i].free =TRUE;

}

lastAlloc = 0;

return;

}/*end constructor--*/

SubAllocator::~SubAllocator()

{

free(indices);

return;

}/*end destructor---*/

struct Indices* SubAllocator::alloc()

{

U4 i;

Miscellaneous Topics 345

C
h
a
p
te

r
6

if(lastAlloc==size-1){ lastAlloc=0; }

for(i=lastAlloc;i<size;i++)

{

if(indices[i].free==TRUE)

{

indices[i].free=FALSE;

lastAlloc = i;

return(&indices[i]);

}

}

for(i=0;i<lastAlloc;i++)

{

if(indices[i].free==TRUE)

{

indices[i].free=FALSE;

lastAlloc = i;

return(&indices[i]);

}

}

return(NULL);

}/*end alloc--*/

void SubAllocator::release(struct Indices *addr)

{

//sanity check

if((addr>=&indices[0])&&(addr<=&indices[size-1]))

{

(*addr).free=TRUE;

}

else

{

printf("SubAllocator::release():");

printf("release failed, address out of bounds\n");

}

return;

}/*end release--*/

void SubAllocator::printList()

{

U4 i;

for(i=0;i<size;i++)

{

if(indices[i].free==FALSE)

{

printf("indices[%lu] “,i);

printf("[%lu, “,indices[i].index1);

printf("%lu,",indices[i].index2);

346 Chapter 6

printf("%lu]\n",indices[i].index3);

}

else

{

printf("indices[%lu]=FREE\n",i);

}

}

return;

}/*end printList--*/

void main()

{

U4 ticks1,ticks2;

U4 nAllocations=1024;

U4 i;

SubAllocator *ptr;

struct Indices **addr;

ptr = new SubAllocator(nAllocations);

addr = (struct Indices**)malloc(nAllocations*sizeof(struct

Indices*));

ticks1 = GetTickCount();

for(i=0;i<nAllocations;i++)

{

addr[i] = (*ptr).alloc();

if(addr[i]==NULL)

{

printf("addr[%lu]==NULL\n",i);

exit(1);

}

}

for(i=0;i<nAllocations;i++)

{

(*ptr).release(addr[i]);

}

ticks2 = GetTickCount();

delete(ptr);

free(addr);

printf("msecs=%lu\n",ticks2-ticks1);

return;

}/*end main---*/

Miscellaneous Topics 347

C
h
a
p
te

r
6

When this application is executed, the following output is produced:

msecs=0

The allocation and release of 1,024 Indices structures took less

than a millisecond. This is obviously much faster than anything we
have looked at so far.

The moral of this story: If you have predictable application behav-
ior, you can tailor a memory manager to exploit that predictability
and derive significant performance gains.

Monolithic Versus
Microkernel Architectures

All of the operating systems that we looked at in Chapter 2 were
monolithic, which is to say that all the components of the operating
system (the task scheduler, the memory manager, the file system
manager, and the device drivers) exist in a common address space
and everything executes in kernel mode (at privilege level 0). In
other words, a monolithic operating system behaves like one big
program. UNIX, Linux, MMURTL, DOS, and Windows are all mono-
lithic operating systems.

Another approach to constructing an operating system is to use a
microkernel design. With a microkernel operating system, only a
small portion of the operating system functions in kernel mode.
Typically, this includes task scheduling, interrupt handling,
low-level device drivers, and a message-passing subsystem to pro-
vide interprocess communication primitives. The rest of the
operating system components, like the memory manager and the
file system manager, run as separate tasks in user space and com-
municate with each other using the kernel’s message passing
facilities. MINIX, Mach, and Chorus are examples of microkernel
operating systems.

The difference between monolithic and microkernel architectures
is displayed in Figure 6.2.

The researchers supporting the microkernel school of thought
claim that the enforcement of modular operating system compo-
nents provides a cleaner set of interfaces. This characteristic, in
turn, makes it easier to maintain and modify an operating system.
Operating systems are often judged with regard to how well they
accommodate change. The operating systems that tend to survive
are the ones that are easy to extend and enhance. By allowing core

348 Chapter 6

components to be separate tasks running at user level, different
implementations can be switched in and out very easily.

Furthermore, microkernel proponents also claim that their
approach provides better system stability. For example, if the mem-
ory manager is faced with a terminal error, instead of bringing down
the entire operating system the memory management user task
exists. This gives the microkernel the opportunity to recover grace-
fully from what might ordinarily be a disaster.

In the early 1990s, Torvalds and Tanenbaum became involved in a
flame war. This well-known debate was initiated by Tanenbaum
when he posted a message to comp.os.minix entitled “Linux is
obsolete.” In his original message, Tanenbaum mentioned:

“Don’t get me wrong, I am not unhappy with LINUX. It will
get all the people who want to turn MINIX in BSD UNIX off
my back. But in all honesty, I would suggest that people who
want a **MODERN** “free” OS look around for a micro-
kernel-based, portable OS, like maybe GNU or something
like that.”

“Modern” OS — my goodness, that sounds a tad arrogant to me.
The resulting flame-fest progressed over several messages, each

side attacking the other’s logic and world view. Although Tanen-
baum did raise some interesting points in his debate with Torvalds,
history sides with Torvalds. MINIX has been relegated to a footnote
in history and Linux has a user base of millions.

Miscellaneous Topics 349

C
h
a
p
te

r
6

Figure 6.2

As I stated in Chapter 1, speed rules the commercial arena. Dar-
win’s laws definitely apply to the software arena. Those operating
systems that possess attributes that make them useful in production
environments will be the ones that survive. The successful operat-
ing systems that are currently the big money makers for software
vendors, like Microsoft, HP, Sun, and IBM, are monolithic (i.e., Win-
dows, HP-UX, Solaris, and zOS).

One problem that plagues microkernel implementations is rela-
tively poor performance. The message-passing layer that connects
different operating system components introduces an extra layer of
machine instructions. The machine instruction overhead introduced
by the message-passing subsystem manifests itself as additional
execution time. In a monolithic system, if a kernel component needs
to talk to another component, it can make direct function calls
instead of going through a third party.

NOTE A classic example of the performance hit associated with
pushing functionality to user space is X Windows. Linux does not have
a significant amount of user-interface code in the kernel. This affords
Linux a modicum of flexibility because the kernel has not committed
itself to any particular GUI implementation. Linux can run GNOME,
KDE, and a number of other GUIs. The problem, however, is that
everything happens in user space, and this entails a nasty performance
hit. Windows, on the other hand, has pushed a hefty amount of the
GUI management code down to the kernel, where interaction with
hardware is more expedient. Specifically, most of Windows GUI code is
contained in the Win32k.sys kernel mode device driver.

Security problems are another issue with microkernel designs.
Because core operating system components exist in user space,
they have less protection than the kernel. I imagine that it would be
possible to subvert a given system manager by creating a duplicate
task that hijacks the message stream between the kernel and the
existing component. Microkernel advocates may also claim that
their designs are more stable, but I doubt that an operating system
could survive if its memory management unit called it quits.

Finally, most production operating system implementations are
huge. According to a July 29, 1996, Wall Street Journal article, Win-
dows NT 4.0 consists of over 16.5 million lines of code. I would
speculate that Windows XP may very well have doubled that num-
ber. With a code base in the millions, I am not sure if the
organizational benefits provided by a microkernel design would
really make that much of a difference. On this scale, internal con-
ventions and disciplined engineering would probably have a greater
impact on maintainability.

350 Chapter 6

In other words, it is not exactly what you are building but how
you build it that makes the difference between success and failure.

Table 6.1 presents a comparison of monolithic and microkernel
design approaches.

Table 6.1

Monolithic Microkernel

Maintainability complicated interaction marginally better

Stability kernel errors lead to crash questionable isolation of errors

Performance faster slower, messaging overhead

Security everything in kernel mode core components in user mode

Closing Thoughts

In 1965, an Intel Corporation co-founder named Gordon Moore sug-
gested that the number of transistors in a processor would double
every 18 months. This rule of thumb became known as Moore’s

Law. Moore’s Law implies that the linear dimensions of a transistor
are cut in half every three years (see Figure 6.3).

A micrometer is one-millionth of a meter:

1 m = 10-6m

The anthrax bacterium is 1 to 6 micrometers in length. A human
hair is 100 micrometers in diameter. Most chips today have transis-
tors that possess sub-micron dimensions.

A nanometer is one-thousandth of a micrometer:
1 nm = 10-9m

= 1/1000 m

The diameter of a hydrogen atom, in its ground state, is roughly
one-tenth of a nanometer.

Solid-state physicists will tell you that an electron needs a path of
about three atoms wide to move from one point to another. If the

Miscellaneous Topics 351

C
h
a
p
te

r
6

Figure 6.3

path width gets any smaller, quantum mechanics takes hold and the
electron stops behaving in a predictable manner.

In 1989, Intel released the 80486 processor. The 80486 had tran-
sistors whose linear dimensions were 1 micrometer. Using 1989 as
a starting point, let’s see how long Moore’s Law will last before it
hits the three-atom barrier.

Table 6.2

Year Size Processor

1989 1 micrometer Intel 80486 (1 micrometer)

1992 0.5

1995 0.25 Pentium Pro (.35 micrometers)

1998 0.125

2001 0.0625 Pentium 4 (.18 micrometers)

2004 0.03125

2007 0.015625

2010 0.0078125

2013 0.00390625

2016 0.001953125

2019 0.000976563

2022 0.000488281

According to Moore’s Law, the length of a transistor will be about
4.88x10-10 meters by the year 2022. This corresponds to a path
width that is roughly four hydrogen atoms across. As you can see
from the third column, Intel has made valiant attempts at trying to
keep up. However, nobody has really been able to sustain the pace
set by Moore’s Law. In 2001, Moore’s Law says that we should have
had transistors whose design rule was .06 micrometers. In 2001,
Intel’s top-of-the-line Pentium 4 had a design rule of .18 microme-
ters. Vendors that say they are staying abreast of Moore’s Law are
really cheating by making their chips larger. This tactic increases
the total number of transistors, but it doesn’t increase the transistor
density per unit length.

Once the wall is hit, there is really nothing that we will be able to
do (short of changing the laws of physics) to shrink transistors. The
only way to increase the number of transistors in a processor will be
to make the processor larger. The party will be over for the proces-
sor manufacturers. Hardware people will no longer be able to have
their cake and eat it too. Businesses that want to increase the
horsepower of their information systems may have to revert back to
room-sized computers.

In the beginning, algorithms and the people who worked with
them were valued highly because the hardware of the day was often

352 Chapter 6

inadequate for the problems that it faced. Take the Bendix G-15, for
example, which had 2,160 words of magnetic drum memory in 1961.
In order to squeeze every drop of performance out of a machine,
you needed to be able to make efficient use of limited resources.
Program size was typically the biggest concern. If instructions
existed in more than one spot, they were consolidated into a proce-
dure. This meant that the execution path of a task tended to spend a
lot of time jumping around memory. I remember two Control Data
engineers telling me about how they simulated an entire power grid
in southern California using less than 16KB of memory.

NOTE In 2002, with the advent of 256MB SDRAM chips and 512KB
L2 caches, program size is not such a pressing concern. Program
speed is the new focal issue. This has led to an inversion of program-
ming techniques. Instead of placing each snippet of redundant code in
its own function, developers have begun to deliberately insert redun-
dant instructions. For example, inline functions can be used to avoid
the overhead of setting up an activation record and jumping to
another section of code.

When Moore’s Law meets the laws of physics, the computer indus-
try will once again be forced to look for better solutions that are
purely software-based, primarily because all the other alternatives
will be more expensive. One positive result of this is that the neces-
sity to improve performance will drive the discovery of superior
algorithms. Computer science researchers may see a new heyday.

The demise of Moore’s Law may also herald the arrival of less
desirable developments. Lest you forget, major technical advances,
such as radar and nuclear energy, were first put to use as weapons
of war. Potential abuse of technology has already surfaced, even in
this decade. At Super Bowl XXXV, hundreds of people involuntarily
took part in a virtual lineup performed by Face Recognition Soft-
ware. Is there a reason why people who wish to watch a football
game need to be treated like suspects in a criminal case? Why was
the public only informed about the use of this software after the
game had occurred?

This is just the beginning. Artificial intelligence programs will
eventually be just as sophisticated and creative as humans. To a cer-
tain extent, they already are. In 1997, an IBM RS/6000 box named
Deep Blue conquered the world chess champion, Garry Kasparov, in
a six-game tournament. I was there when it happened (well, sort
of). I was huddled with an Intel 80486 the afternoon of the final
game, reading a “live” transcript of the match via an IBM Java
applet. For a more graphic example of AI progress, try playing

Miscellaneous Topics 353

C
h
a
p
te

r
6

against the bots of Id Software’s Quake 3. You would be impressed
with how wily and human those bots seem.

As the capabilities of hardware and software ramp upward, the
surveillance that we saw at the Super Bowl will give way to some-
thing more insidious: behavior prediction and modification. The
credit bureaus and various other quasi-governmental agencies
already collect volumes of data on you. Imagine all of this data being
fed into a computer that could consolidate and condense the infor-
mation into some kind of elaborate behavioral matrix. If you can
simulate someone’s behavior, you can make statistical inferences
about their future behavior. Furthermore, if you can predict what
someone is going to do, you can also pre-empt their behavior in an
effort to control them. There could be software built that less-than-
scrupulous leaders could use to implement social engineering on a
national scale. Indoctrination does not have to assume the overt
façade that Huxley or Bradbury depicted. It can be streamed in sub-
liminally through a number of seemingly innocuous channels.

“We are the middle children of history, raised by television to
believe that someday we’ll be millionaires and movie stars and rock
stars, but we won’t.”

— Tyler Durden

As time passes, these kinds of issues will present themselves. It is
our responsibility to identify them and take constructive action. The
problem with this is that the capacity to recognize manipulation
does not seem, to me, to be a highly valued trait. The ability to
think independently is not something that I was taught in high
school. If anything, most public schools present a sanitized version
of civic education. Not that this matters much, but most people don’t
start asking questions until the world stops making sense.

Nevertheless, if we sit idle while the thought police install their
telescreens, we may end up like Charles Forbin, slaves to a massive
and well-hidden machine.

“In time, you will come to regard me with not only awe and respect,
but love.”

— Colossus, speaking to Charles Forbin in Colossus:

The Forbin Project (1969)

354 Chapter 6

Index

.COM executable, 129-130
1-bit reference counting, 282, 304
8042 keyboard controller, 36
8088, 46

A

A20 address gate, 36
activation record, 138
address, 9
address line, 9
Adler, Mike, xi
ALGOL, 181
algorithms, trade-offs, xvii
Allen, Woody, 59
Anderson, Tom, 152
ANSI time routines, 213
arm-waving, 2
assembly language, 169
atomic operations, 36
automatic memory management, 160
automatic memory managers, 281
AX, 6-7

B

Backus, John, 177
Bell Labs, xxiv
big red switch, 102
big-endian, 136
binary search tree (BST), 225
bit, 4

clear, 22, 225
set, 22, 225

bitmap.cpp, 232
bitmapped memory management, 225
Bletchley Park, xiv
block of code, 144
block-based languages, 169
Blue Screen of Death (BSOD), 101

Boehm-Demers-Weiser (BDW)
Conservative Garbage Collector, 158,
161

bondage-discipline programming language,
181

Borland Turbo C, xiii, 40, 135
bottom of memory, 9
BP, 6, 15
Brey, Barry, xi
brk(), 159
Brooks, Mel, 1
buffer overflow exploit, 88
BugTraq, 92
Burgess, Richard, 59
BX, 15
byte, 4

C

C programming language, 184
disadvantages of, 192
history of, xxiv, 184

cache memory, 5, 7
Cfront, xxiii
Chemical Rubber Company (CRC), xv
cleared bit, 22, 225
clock(), 213
clone, 46, 153
COBOL, 171

ANSI standards, 173
divisions, 173
Fujitsu compiler, 173
lines in existence, 171
versus assembler, 175

code section, 129, 134
Colossus, xiv
Common Business Oriented Language, see

COBOL
compiler-based memory allocation,

128-129

355

conforming code segment, 22
conservative garbage collection, 306
constructors, 333
control bus, 10
Control Data Corporation

CDC 3300, 3
CDC 6600, 3

conventional memory, 48
copying garbage collector, 282, 331
CP/M, 46
CR0-CR4, 6, 25, 30-31
Cray, Seymour, 3
CS, 6, 16, 32
Cutler, Dave, 93, 96
CX, 15

D

dangling pointer, 158
data bus, 10
data section, 129, 132
DDR SDRAM, 4
debug, writing boot sectors, 41-42
Deep Blue, 353
deferred reference counting, 282, 304
demand-paged virtual memory, 63
destructors, 333
DI, 15
Digital Equipment Corporation (DEC), 93
Dijkstra, 169
dirty bit, 30
disaster recovery, xxvi
disk I/O, performance cost, 8
disk operating system (DOS), 46

autoexec.bat, 48
COMMAND.COM, 47
config.sys, 47-48
extender, 56
extender, DJGPP, 57
interrupt replacement, 52
IO.SYS, 47
memory usage statistics, 49-50
MSDOS.SYS, 47
Protected Mode Interface (DPMI), 57
video driver, 50

disk storage, 5, 7
Distributed Network Architecture (DNA),

60
DOS/4G, 57

Double Data Rate Synchronous Dynamic
Random Access Memory, see DDR
SDRAM

double word, 4
double fault, 1
DRAM, 3
driver.cpp, 241, 261, 285, 307
DS, 6, 15-16, 32
Dunfield, Dave, 40
Durden, Tyler, 354
DX, 15
dynamic memory, 128-129
Dynamic Random Access Memory, see

DRAM

E

EAX, 6-7
EBP, 6-7
EBX, 6-7
ECX, 6-7
EDI, 6-7
Edwards, Dan, 161
EDX, 6-7
EFLAGS, 6-7
EIP, 6-7
EMM386.EXE, 27, 41
Enhanced Synchronous Dynamic Random

Access Memory, see ESDRAM
ENIAC, xiv
Enigma, xiv
ES, 6, 16, 32
ESDRAM, 4
ESI, 6-7
ESP, 6-7
Executable and Linkable Format (ELF), 84
execution time, 212
expand down segment, 22
expanded memory, 48
Expanded Memory Specification (EMS), 48
explicit memory management, 157
extended memory, 48
eXtensible Memory Specification (XMS),

57
external fragmentation, 156

F

Face Recognition Software, 353
Fermi, Enrico, xiii, 45
ferrite core memory, xiv

Index

356

Feynman, Dick, xv
FIFO, 110
FLAGS, 15
flat memory model, 31
Flowers, Tommy, xiv
FLOW-MATIC, 171
Forbin, Charles, xiv, 354
formal parameter, 146
FORTRAN, 177

ANSI standards, 178
program organization, 180

free(), 128, 157-158
FS, 6, 16
function epilogue, 139
function prologue, 138

G

garbage, 281
garbage collection, 160

collectors, 281
comparable performance, 164

Gates, Bill, 5, 18, 46, 93
GDT, 20
GDTR, 6
generating random numbers, 215
generational garbage collector, 338
GetProcessHeap(), 111
GetTickCount(), 214
gigabyte, 5
Global Descriptor Table, see GDT
Global Descriptor Table Register, see

GDTR
global variable, 146
Gosling, James, 192
GS, 6, 16

H

handles versus addresses, 335
heap, 129, 132, 137

allocation, 151
HeapAlloc(), 111
HeapFree(), 111
HeapReAlloc(), 111
Heisenberg’s Uncertainty Principle, xvi
Hennessey, John, 212
HIMEM.SYS, 58
Hopper, Grace Murray, 171
human computers, xv

I

IDTR, 6
incremental garbage collection, 302
Intel Corporation, xi, xvi, 1, 6, 11, 13
internal fragmentation, 156
International Business Machines (IBM)

705, xiv
Interrupt Service Routine (ISR), 52
interrupt vector table (IVT), 48, 52
inverse transform method, 218
IP, 15, 37

J

Java, 193
application memory management, 195
explicit pointers, 193
heap, 195
method area, 195
multiple inheritance, 193
naming scheme, 193
operator overloading, 193
thread, program counter, 195
thread, stack, 195
threads, 195
versus C++, 194
Java virtual machine (JVM), 195

Java virtual machine specification, 195, 201
javap, 198-199

K

K&R C, xxiv
Kasparov, Garry, 353
kernel mode driver, 46, 100
Kernighan, Brian, xxiv, 184
Kilby, Jack, xvi
kilobyte, 5

L

L1 cache, 7
L2 cache, 7
language complexity threshold, 170
latency, 156
LDT, 20
LDTR, 6, 20-21
Lee, David M., xv
Lee, Stan, xxvi
Lehmer, Dick, 219
LeMarchand cube, 45
LGDTR, 37, 202

Index

357

linear address, 19, 27, 34
linear address space, 63

versus physical address space, 33-34
Linear Congruential Generator (LCG), 218
LINPACK benchmark, 223
Linux

design goals, 68
memory allocation, 76
memory usage, 81
page fault handling, 76
paging, 72
segmentation, 69

LISP, 161
little-endian, 136
Loadable Kernel Module (LKM), 84
Local Descriptor Table, see LDT
Local Descriptor Table Register, see LDTR
local variable allocation

additional stack frames, 149
all-at-once, 146
comparison, 149

local variable, 145
locked page, 75
logical address, 33-34
LRU, 110

M

main memory, 3
malloc(), ii, 128, 157-158
mallocV1.cpp, 239
mallocV2.cpp, 260
mallocV3.cpp, 274
mallocV4.cpp, 287
mallocV5.cpp, 309
manual versus automatic memory

management, 157
mark-compact garbage collector, 282
mark-sweep garbage collector, 282, 304
Matkovitz, George, xi
McCarthy, John, 161
McNealy, Scott, 192
megabyte, 5
memmgr.cpp, 236, 251, 267, 289, 312
memory hierarchy, 5
memory leak, 83, 157
memory management

mechanism versus policy, 1
summary, 202

memory protection, 11
brute force assault, 83

Message-based MUltitasking Real-Time
kerneL, see MMURTL

Meyer, Bertrand, 160
MFLOPS, 212
MICRO-C, 40, 52, 125
microkernel operating system, 348
micrometer, 351
MINIX, 67
MIPS, 212
MMURTL, 59

design goals, 59
memory allocation, 66
paging, 64
segmentation, 61

monolithic operating system, 348
Moore, Gordon, 352
Moore’s Law, 352

N

NACHOS operating system, 152
nanometer, 351
Naughton, Patrick, 192
newFree(), 208
newMalloc(), 208
non-local program jumps, 56
null segment selector, 32

O

octal word, 5
online transaction processing (OLTP), vxiii
OpenBSD, 91

P

paging, 26
page, 34
page directory, 27
page directory entry, 27
page fault, 28
page frame, 34
page table, 27
page table entry, 35
paging as protection, 31

paragraph, 5, 174
Pascal, 181
Paterson, Tim, 46
Patterson, David, 117
PC DOS 2000, 92

Index

358

Pentium Processor
lineage, 13
modes of operation, 14
physical address space, 9, 14
registers, 7, 15

perform.cpp, 241, 288, 311
petabyte, 5
Phar Lap DOS extender, 57
physical address, 33-34
Physical Address Extension (PAE), 9, 31,

97
physical address space, 9, 14

versus linear address space, 33-34
pmon.exe, 114
Podanoffsky, Mike, xxiv
POP instruction, 136
Portable Operating System Interface,

68-69, 159
primary storage, 3
process working set, 107
protected mode, 18

paging, 26
paging address resolution, 27
paging implied bits, 27-28
segment descriptor, 19-20
segment descriptor table, 19-20
segment selector, 19-20
segment types, 22
segmentation, 19

protection violation exception, 25
pseudorandom numbers, 218
PUSH instruction, 136
pviewer.exe, 114

Q

quad word, 5

R

RAM, 3
Rambus Dynamic Random Access

Memory, see RDRAM
Random Access Memory, see RAM
RDRAM, 4
real mode, 14

address lines, 15
addressing, 16
boot process, 41
memory protection, 17
offset address, 15

registers, 15
segment address, 16
segment address implied bits, 17

realloc(), 158
reference counting, 283

counting tests, 299
implementation, 284
theory, 283
tradeoffs, 302

reference cycle, 302
register, 7, 15
replacement policy,

first-in first-out (FIFO), 110
least recently used (LRU), 110

response time, 212
rings of protection, 23
Ritchie, Dennis, xxiv, 184
run of bits, 226

S

sandboxing, 2
Schindler, John, xvii
Schreiber, Sven, 124, 154
scope, 144
SDRAM, 3
SecurityFocus, 92
seed, 219
segment, 11
segmentation, 19
segregated lists, 265
semaphores, 36
sequential fit, 248
set bit, 22, 225
SI, 15
simple reference counting, 282
slab allocator, 78
slide rules, xv
SP, 15
SRAM, 4
SS, 15
stack, 136

frame, 138
frame pointer, 139

Standard Performance Evaluation
Corporation (SPEC), 223

static memory, 128
Static Random Access Memory, see SRAM
storage-versus-speed trade-off, 279
Stroustrup, Bjarne, xxii

Index

359

structured programming, 169
suballocator, 343
symbol table, 343
Symbolics, 161
Synchronous Dynamic Random Access

Memory, see SDRAM
system call gate, 154
system call interface, 203
system management mode, 14
system working set, 107

T

Tanenbaum, Andrew, 152, 349
Tenberry Software, 57
terabyte, 5
Terminate and Stay Resident program

(TSR), 49
Thompson, Ken, xxiv, 184
thrashing, 28
three-finger salute, 115
three-level paging, 72
thunking, 118
time, 212
time(), 213
top of memory, 9
Torvalds, Linus, 67
TR, 6, 21
tracing, 281
tree.cpp, 227
triple fault, 1
typographic conventions, xxii

U

Unics, 184
UNIX, 184
upper memory blocks, 48

V

Video Random Access Memory, see VRAM
virtual 8086 mode, 14

Virtual Control Program Interface (VCPI),
57

virtual memory, 1, 7, 26, 63
virtual-paged memory, 63
volatile storage, 3
VRAM, 4, 50, 76-77

W

wall clock time, 212
Windows, 92

Address Windowing Extensions (AWE),
97

Checked Build, 100
Demand Paging, 109
disabling paging, 117
family tree, 95
free/reserved/committed memory, 105
kernel debugger, 99
kernel debugger host, 100
kernel debugger target, 100
kernel memory, 98
kernel memory dump, 101
kernel mode/user mode, 97
locked memory pool, 112
look-aside list, 112
memory allocation, 110
memory map, 96
memory protection, 108
memory usage statistics, 114
Page Frame Number Database (PFN),

107
paged memory pool, 112
paging, 105
segmentation, 99

Wirth, Nicklaus, 181
word, 4
working set, 107

Z

Zorn, Benjamin, 164, 205

Index

360

Direct3D ShaderX Vertex and
Pixel Shader Tips and Tricks
1-55622-041-3 • $59.95
7½ x 9¼ • 520 pp.

Search Engine Optimization
with WebPosition Gold 2
1-55622-924-0 • $49.95
7½ x 9¼ • 360 pp.

Charles Calvert’s Learn
JBuilder 7
1-55622-330-7 • $59.95
7½ x 9¼ • 700 pp.

Virtual Machine Design and
Implementation in C/C++
1-55622-903-8 • $59.95
7½ x 9¼ • 688 pp.

Visit us online at www.wordware.com for more
information. Use the following coupon code for online specials:

memory3471

Search Engine Positioning
1-55622-804-X • $49.95
7½ x 9¼ • 576 pp.

RoboHelp for the Web
1-55622-954-2 • $49.95
7½ x 9¼ • 448 pp.

Looking for more?
Check out Wordware’s market-leading Windows Programming/

Development and Web Programming/Development Libraries
featuring the following new releases.

Companion Files

The source code for most of the examples in this book is provided in
a downloadable file available at www.wordware.com/memory.

When the file is unzipped, it will be organized into two folders:
deploy and meta-inf. The source code in the deploy folder is divided
into subfolders named for the chapters.

